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1 Introduction

Heterogeneity has become a standard for modeling in macroeconomics and finance. Agent-based models

have played a role as a core tool in trying to understand the endogenous dynamics between agents and

their expectations, in either macroeconomic or financial settings. This paper analyzes the dynamics of a

multiple agent system designed to reproduce features from a standard New Keynesian macro model built

from a set of agents learning about their own endogenous dynamics. It is close in spirit to the evolutionary

learning mechanisms used in Arifovic, Bullard & Kostyshyna (2012) (ABK), and more recently in Arifovic,

Grimaud, Salle & Vermandel (2020). They refer to their learning as “social learning.” This concept was

most clearly defined in Vriend (2000) with origins going back to Arifovic (1994). It refers to agents learning

from each other as opposed to learning individually. It is also related to the concept of “epidemiological

expectations” which has recently been surveyed in Carroll & Wang (2022). We also follow much of the

same structure used to study learning in a macro setting from Bullard & Mitra (2002). The distinction in

our approach is to represent heterogeneity with a large and rich population of simulated forecasts making

predictions on both inflation, and future output. The rule structure is heavily influenced by standard time

series models that either line up with theory or data in important ways.

We extend the work of ABK in several directions. First, we simplify the learning structures by abandon-

ing the genetic algorithm (GA) learning mechanism. GA’s are often powerful tools for generating novelty

in a learning environment, but their complexity can often hide important features. We move to a very trans-

parent system with a rich but finite set of forecasting rules. Rule selection is still similar to ABK, but we

have complete control over the set of rules used which gives us more power to scrutinize the interactions

between expectations and the time series they endogenously generate. In the basic New Keynesian frame-

work we show this interaction is very tight. ABK condition forecasts on a stochastic real interest rate which

is the underlying state variable in the economy, and its only shock. We shift our expectations to inflation

and output themselves since there is a much stronger case that these are observable.

Our choices for forecasting agents are driven by model structure, simplicity, and comparisons to pro-

fessional forecaster information. Our hope is that a successful forecaster identified here will yield insights

about individual and professional forecasts collected on macro economic variables. We show that sim-

ple autoregressive (AR) forecasters lead to data consistent with their expectations and keep the simulated

model close to some theoretical predictions. Another interesting distinction between our simplified agent-

based system and ABK is that our results are often much tighter in terms of simulation outcomes. Our
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cross sections of very long time series runs show almost no variability in the estimated long run moments,

a strong defense of ergodicity in most of our runs. Furthermore, we have very few parameter combinations

generating mixed results in terms of stability. Models either converge or explode, but we rarely see both

for the same parameter sets. This is probably a result of our very simple models, and very long simulation

runs.

Our agent inflation predictions are extended to include integrated moving average processes (IMA).

They capture the extreme persistence in U.S. inflation well, (Stock & Watson 2007) and (Pivetta & Reis 2007).

It is generally a useful time series representation for many features that are common in macro series. In a

recent discussion Franses (2020) shows how it is universally applicable, and tied to simple exponential

filters. The connection between the IMA(1,1) and filtering methods is strong. This intellectual connection

goes back to Muth (1960), but is emphasized in Hyndman & Billah (2003). The fact that the IMA does well

is also related to trying to model trends and cycles in macro time series.1 It also connects to results yielding

an ARIMA(1,1,1) representation where an integrated series faces a slowly changing growth rate.

Using results from a common panel of macro predictors for the U.S. from the Survey of Professional

Forecasters, we calibrate approximate time series predictors that line up with the professional forecasters in

terms of both known forecast bias, and cross sectional variability.2 We then put this population of forecast-

ers together, and first see how they do as a group. Their predictive models are combined with a standard

benchmark new Keynesian model to generate dynamics in output and inflation subject to monetary policy

from a Taylor rule. We test whether these simple models can behave reasonably, and generate data that is

at least consistent with their cross sections of predictors. In other words, is the model and the set of hetero-

geneous forecasters self-consistent? In our second stage we release the predictive models to allow them to

learn over time using a combination of evolution and social learning where accurate forecasting rules are

rewarded and replicated. We are again interested in their ability to generate macro features, and whether

they continue to appear similar to actual populations of forecasters in the data in terms of dispersion and

bias.

Our results agree with ABK in several areas. First, we replicate the learnability of the rational expec-

tations equilibrium in the model for certain parameters and restrictions in our learning models. Agents

generate a world which is self-consistent with their forecasting models. We also replicate the possibility of

sunspot equilibria that are not efficient in terms of inflation volatility. In particular, we show that inflation

1A recent success of this approach is Bianchi, Nicolo & Song (2023).
2See (Smith 2022) for many references and examples, and Clements, Rich & Tracy (2023) for a recent survey. Also, see Branch (2004)

who shows that a panel of agents can be aligned with some of the forecaster data.
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self-confirms a near integrated process which is not far from what we see in the actual macro series.3 We

are able to control whether the agents move to this equilibrium through both policy, and the time ordering

of our learning process. Similar to ABK, we explore the stability properties of the model and its connec-

tions to E-stability. In some specifications we get much stronger convergence than E-stability would predict

which is similar to ABK. However, in other model specifications our convergence is exactly on target with

E-stability predictions, a strong divergence from ABK.

One of our results speaks very directly to policy. We show that monetary policy can be used to select

the equilibrium dynamics, and can pull the model out of the integrated learning equilibrium. In doing

this, a central bank would greatly reduce the long term volatility of observed inflation rates, as it drives

these forecasting rules out of the population. This learning population dynamic aligns with commentary

about making sure that long term expectations for inflation do not become entrenched in consumer/worker

beliefs.

At the aggregate level our forecasters generate reasonable inflation time series. When we turn to the

micro level, and compare with the data on professionals some interesting distinctions emerge. First, we

observe much less heterogeneity in our forecasters than in the set of professionals. We can get closer to the

professionals by adding noise to our agents, but the noise level needed seems very large, and it destroys

some of the coherence in the aggregate forecast behavior. We also show that our forecasters individual

errors are mostly uncorrelated, a departure from most studies of professionals. This difference shines a

very sharp light on professional forecaster behavior, since our mechanical forecasters, who optimize mean

squared error from inflation targets, will have a difficult time generating this suboptimal aspect of human

behavior.

We have strong connections to the heterogeneous agent modeling world. In macroeconomics this lit-

erature is quite extensive, and Dawid & Delli Gatti (2018) and Branch & McGough (2018) are two excellent

surveys. Our use of a finite set of models as opposed to an open ended learning mechanism is closely re-

lated the heterogeneous agent model style (HAM) pioneered in Brock & Hommes (1997), but extended to

thinking about many strategies theoretically in Brock, Hommes & Wagener (2005) and computationally in

LeBaron (2021). In macroeconomics the modeling of heterogeneity using small sets of predictive models,

and discrete choice learning dynamics, has several early examples in Branch & McGough (2009), Branch

3This result has a strong connection to Tortorice (2018) that considers a single agent learning setup where the agent is unsure
whether the observed data is integrated or not. In his structure learning about stationarity is able to generate more realistic outputs
from a standard DSGE model. Another related paper is Evans, Honkapohja, Sargent & Williams (2013) who examine a two predictor
learning experiment in a cobweb model. They find that for certain parameter combinations there is a strong appeal to a model with a
changing nonstationary parameter.
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& Evans (2011), De Grauwe (2011), and Anufriev, Assenza, Hommes & Massaro (2013).4 We diverge from

these important early papers by having a larger set of predictors, based on observable series, and tied to

time series model predictions. Also, we stay closer to ABK by using a tournament selection mechanism as

opposed to a discrete choice system.

Recent research has worked to calibrate the predictors to results from human experiments as in As-

senza, Heemeijer, Hommes & Massaro (2021) and surveyed in Hommes (2021). Two important connections

from the social learning world are Hommes, Makarewicz, Massaro & Smits (2017) and Anufriev, Hommes

& Makarewicz (2019). The first lines up with experimental data in a New Keynesian setting, and the second

aligns the GA based learners with data from learning to forecast style experiments. This line of research

of fitting computational agent-based models to results from experiments has its fundamental origins in

Arifovic (1996), and the general field has recently been surveyed in Arifovic & Duffy (2018).

Section 2 introduces the macro time series sample along with the forecaster data. Several stylized facts

are presented along with time series estimates for the models that will eventually be used in the agent-based

simulation. Section 3 presents the New Keynesian macro model, and also introduces the structure for the

agent-based expecations. Section 4 presents the results from the various agent-based computer simulations,

and section 5 concludes.

2 Forecaster calibration

2.1 Long series

We start by looking at the properties of traditional long macro series for the U.S. downloaded from the

Federal Reserve Bank of St. Louis (FRED). Inflation uses both the CPI measure, and the GDP deflator which

are available back to 1947. Output is measured with the output gap, which is GDP divided by potential

GDP. This is available at quarterly frequency back to 1949. All these series end with the fourth quarter 2022.

All series are quarterly, seasonally adjusted, annualized, and measured in percentage units. Figure 1 plots

the two series. Both show strong persistent patterns. The presence of regular business cycles is clear on the

output panel. Inflation is less regular, but takes several long deviations from its mean.

Figure 2 displays the autocorrelation patterns for these two series, and their first differences. Also,

the theoretical autocorrelations for an autoregressive model with one lag (AR(1)) are matched to the first

4The latter of these considers a heterogenous population of forecasters with up to 12 different types, and appeals to theoretically
extending this to an infinite population of forecasters.
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order autocorrelation and presented for comparison. For inflation we see a large amount of persistence as

indicated by positive autocorrelations that decay more slowly than the AR(1) model. The first difference of

the series displays a negative autocorrelation at the first lag, dropping to near zero after this. This graphical

pattern is consistent with an integrated process whose first difference follows a moving average with one

lag, or an IMA(1,1) process which we will be using extensively. Output appears slightly more complicated

with autocorrelations below the simple AR values, and small, but persistently negative first difference

autocorrelations which could indicate over differencing.

Table 1 gives summary statistics and results from our benchmark forecasting methods for the three long

FRED series. For the two inflation series the means are both near 3. The standard deviation is much higher

for the CPI series at 3.28 versus 2.57 for the GDP deflator. We will generally stay with the deflator as being

a more consistent reference series over our long range data.

Three simple models are compared in terms of forecast performance, an AR(1), IMA(1,1), and a naive

benchmark random walk (RW). The last model uses the value at t as a forecast for t + 1. All of the estimates

are done in sample, and are an optimistic estimate of forecast performance. We are only interested in

showing the reasonableness of these simple time series models, not their expected values in practice. In all

cases we compare the properties of forecast errors as defined by

et+1 = xt+1 − ft+1,t (1)

where xt+1 is the forecast target, and ft+1,t is the forecast for t + 1 given time t information. et+1 is our

forecast error. The rows labeled RMSE show the root mean squared forecast error for the forecasting models.

All forecasts are one quarter ahead. For inflation the performance of the two time series models is relatively

similar, and they beat the sample standard deviation by a large amount. In all cases the RW performed

worst. However, it is not too far from the other models.

We also estimate two standard measures of forecaster performance, bias and error autocorrelations.

Bias is measured as the sample mean for et+1, and autocorrelation estimates the first order autocorrelation

for et+1 These are both standard performance measures, and for a good predictor, both should be near

zero. Our mechanical forecaster errors are generally unbiased. The autocorrelations for the forecast errors

are small for the IMA model, but relatively large and negative for both the AR and the RW forecasts for

inflation, indicating model misspecification. Figure 3 shows the autocorrelation patterns for the three fore-

casts for inflation (GDP deflator). The IMA model leaves very little indication of error correlation, but the
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other two show strong negative correlations at the first lag. This indicates some model misspecification for

the latter two models, further strengthening the case for the IMA being a reasonable time series model for

inflation.

Values for output show a similar level of variability in the standard deviation as the GDP deflator

series. Also, it is a little biased as evident from the mean of −1.51. The set of three forecasts are again used,

and this time the performance of all three is similar. The AR(1) performs best, but the random walk, and

the IMA are the same. Figure 4 displays forecast error autocorrelations for output. All three models show

similar patterns of first positive, and then consistent negative autocorrelations. This distinct shape suggests

that something is wrong with all three models here. There is probably value in a longer lagged AR, or a

more complex model, but we will not undertake this search. Our objective is to stay with very simple and

parsimonious candidates for our agent-based simulations.

Table 2 presents the estimated parameters for the two time series models. The AR model picks up

strong persistence in all the series, but it should be noted that the parameter stays a good distance away

from 1. The MA parameter, θ, is estimated as less than zero for the two inflation series. Section 3 will show

the direct connection between the IMA model and an exponential filter with a gain of 1 + θ. Our inflation

estimates correspond to filtering gain parameters in the range of 0.5 − 0.6. Finally, output shows greater

persistence, but the MA parameter is near zero. This suggests that when confronted with the possibility of

a true random walk the output series would take this as opposed to a noisy random walk.

2.2 Forecasters

We have two objectives in this section. First, to provide some supporting evidence for reasonable me-

chanical time series predictors that will stand in for professional forecasters in our heterogenous predictor

simulations. Second, we will also document a small set of stylized facts about near term professional fore-

casts that we will be trying to replicate in our agent-based simulations. For this we add time series drawn

from the Survey of Professional Forecasters (SPF) available from the Federal Rerserve Bank of Philadelphia.

This is a common data set used to evaluate the expectations generated by professional forecasters. We will

examine their inflation forecasts for eventual comparisons with our simulated agent-based expectations.

These series are available quarterly from 1983, and we end with the fourth quarter in 2022. The series

record several different horizons, but we concentrate only on the one quarter ahead forecasts.

The first two rows of table 3 present summary statistics for inflation in the subperiod where we have
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professional forecaster data. The underlying series here come from the FRED database. The mean of about

2.8 for both series corresponds to this period being known as a time of low and relatively stable inflation.

The standard deviation is also significantly lower than the longer samples shown in table 1. It is also

reduced significantly by using the trimmed series.

Next we turn to forecaster comparisons. We continue to use only a one quarter ahead forecast. Longer

range forecasts are interesting, but our modeling calibration probably lines up best with short term fore-

casts. Also, our time series forecasts have their best chance at competing in this realm. In forecasting, timing

is critical, and it is important to note that we are using a forecast which is generated in the middle of the

current quarter (t), and directed at one quarter ahead (t+1). This forecast survey is done almost one month

into a quarter, so forecasters have already seen 1/3 of the current quarter’s data. This gives it a slight unfair

disadvantage over the time series models used for comparison since they use the entire quarter t realisation.

Returning to table 3 we see the RMSE for the same benchmark forecasting models estimated in sample

along with the mean forecast from the professionals, labeled SPF. All models are relatively close to the

professionals in terms of RMSE performance. The naive RW is always the worst, and for the raw CPI series

RMSE is even larger than the standard deviation of the series. Turning to bias we see little evidence for

strong bias in any of the forecasts. The forecast error autocorrelations tell a slightly different story. Both

the naive RW model, and the professionals show a large amount of autocorrelation in their forecast errors.

It is interesting to note that while similar in magnitude these autocorrelations have opposite signs. The

autocorrelations patterns for the IMA forecast errors countinue to be small. There is a slight blip for the

CPI series with a positive 0.15 value, but this is not large relative the the correlations we see from the

professionals. Figure 5 plots the autocorrelations for the professional forecast errors for both the CPI and

trimmed CPI series. In both cases there is a strong positive correlation in the forecast errors at one quarter,

and persisting out 2-3 quarters depending on the series.

The last row of table 3 looks at the cross sectional dispersion of the professional forecasts. The Survey of

Professional Forecasters reports several numbers for these. We will use the simple cross sectional standard

deviation. We want to normalize this to line up with our model simulations. A first thought might be to

normalize relative to the mean inflation rate, but since this is so close to zero in the later parts of the data,

it seems to make more sense to use something else. We will normalize relative to the sample standard

deviation. This value is reported in the last line. For the raw series it is about 0.34, and for the trimmed

series it is 0.61. The numerator in these estimates is exactly the same. The difference is driven by the much

lower standard deviation in the trimmed series. For our results we will take the 0.34 value as our target,

7



since this is using the series that is the forecasters’ target.

This section presented evidence from both observed inflation series, and professional forecasters. It

shows that the AR(1) and IMA(1,1) should be considered reasonable models when compared with profes-

sional forecasters in the world of short term inflation forecasts. They are on the same order of magnitude

in terms of RMSE, and their error autocorrelations are better (smaller) than those of the professionals.5 We

also presented two other facts on the professional forecasters. Even for short horizon forecasts, their errors

show large autocorrelations. These seem strange since it is a common indicator of inefficiency in a forecast.

Finally, they also generate a large amount of cross sectional dispersion. We will eventually compare this

with simulated agents. One of our goals is to see how difficult it will be to replicate this dispersion.

3 Forecasters in a simple New Keynesian model

3.1 Base model

The model we use for the dynamics of output and inflation comes from Woodford (2003) and is studied

extensively in a learning environment in Bullard & Mitra (2002). This is the basic structure that is used

in the social learning model of Arifovic et al. (2012) (ABK), and we follow much of their notation. It is a

standard 3 equation New Keynesian model with a single stochastic state variable in the form of a changing

real interest rate. The familiar three equation system is given by,

zt = ze
t+1 − σ−1(rt − πe

t+1) + σ−1rn
t (2)

πt = κzt + βπe
t+1 (3)

rt = ϕππt + ϕzzt, (4)

with the real interest rate following an AR(1) process as in,

rn
t = ρrn

t−1 + ϵt, (5)

5Since the time series models are not out of sample, and use full quarter t information, they probably should fall slightly behind
the professionals in a fair race. It is not our objective here to make exact comparisons, but to show they are reasonable stand in models
for our agent-based forecasters.
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and ϵt is drawn from a normal, N(0, σ2
ϵ ). Output is zt in percentage deviation from potential output, the

output gap, and πt is inflation as a deviation from a steady state inflation rate. Variables shown as xe
t+1 are

subjective expectations of time t + 1 variables using only information known up to time t, and sometimes

only t − 1. To simplify notation we will follow this convention,

xe
t = E∗

t−1(xt) (6)

xe
t+1 = E∗

t−1(xt+1) (7)

where E∗() represents the subjective expectation of our agents using mechanical time series forecasts. Equa-

tion 4, the Taylor rule, is the standard feedback from the observed outcomes to the policy maker’s nominal

interest rate response.

This is the timing considered by ABK, and we will stay with this format to keep our results closely

comparable to theirs. It does bring up a few simultaneity issues which need to be addressed in an agent

based model. Most of these are related to the timing in the Taylor rule used for interest rate policy. As

written here interest rates are set given contemporaneous information on inflation and output. This has

been criticized as not being realistic, and other formulations consider lagged information, contemporaneous

expectations, or other expectation formations as Taylor rule inputs. These may have varying impacts on the

dynamics of the model and the ease of tranfering it into a computational agent-based form.6

In setting up the simulation we will need to break down some of the sequencing and simultaneity of

the basic model. We can write the linear system as follows with yt = (zt, πt):

yt = A0yt + A1, (8)

A0 =

 σ−1ϕz σ−1ϕπ

κ 0

 , (9)

A1 =

 ze
t+1 + σ−1(rn

t + πe
t+1)

βπe
t+1

 . (10)

6One of the most intuitive and easiest to implement from an agent-based perspective is to use contemporaneous expectations πe
t

and ze
t in the Taylor rule. This and many other possibilities are covered in detail in Bullard & Mitra (2002).
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This can be solved for the current output and inflation levels from

yt = (I − A0)
−1 A1. (11)

Setting A1 requires knowledge of rn
t the exogenous shock, and also the one period ahead expectations,

which in our model are determined from t − 1 information. This is all can done easily in a computational

agent-based world with t − 1 values of all variables 7 The exact modeling sequence is given by:

1. Starting at time t determine the natural rate, rt from its past value and the current shock.

2. Now use this along with t − 1 information to generate t + 1 expectations for the matrix A1.

3. Use equation 11 to get time t values for the state variables.

The model can also be lined up to a rational expectations steady state where the perceived law of motion

(PLM) lines up with the actual law of motion (ALM). One can follow Bullard & Mitra (2002) and write the

system as,

yt = Bye
t+1 + χrn

t (12)

B =
1

σ + ϕz + κϕπ

 σ 1 − βϕπ

κσ κ + β(σ + ϕz)

 (13)

χ =
1

σ + ϕz + κϕπ

 1

κ

 (14)

Assume that all agents follow the following PLM

yt = α + crn
t , (15)

and expectations given by,

ye
t+1 = a + cρrn

t . (16)

7If the modeler were willing commit to t + 1 expectations as linear in current output and inflation, then the model could be further
compacted, but we cannot make this assumption.
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The actual law of motion then follows,

yt = Ba + (Bcρ + χ)rn
t . (17)

The MSV solution aligning the actual and perceived laws of motion yields

ye
t+1 = ā + c̄rn

t , (18)

with

ā = 0, c̄ = (I − ρB)−1χ. (19)

This formulation gives a simple analytic answer to a learning equilibrium in the model. It also shows that

since (zt, πt) are linear functions of rn
t they will also follow the same AR(1) followed by rn

t .

3.2 Stability

Bullard & Mitra (2002) show that a necessary and sufficient condition for a rational expectations equilibrium

to be unique and stable on certain learning dynamics (E-stability) the following condition must hold,8

κ(ϕπ − 1) + (1 − β)ϕz > 0. (20)

In the social learning environment used here (or in ABK), it is not clear if this condition will guarantee

stability. An interesting result from ABK is that for some parameter values where this condition is violated,

they still see some convergence. Also, it should be noted that for the case where ϕz = 0 the condition

corresponds to the “Taylor principle” in which stability requires that central banks respond more than 1-1

to changes in actual or perceived inflation.

3.3 Expectations

Our objective is to replace the genetic algorithm (GA) learning system of ABK with a simpler, more tractable,

learning approach. Our methodology will implement some expectational models inspired by our earlier

empirical observations. Our mechanical forecasters will only be approximations to true market dynamics,

but we will test these on their generated data, and show that often their forecasting mistakes are small, and

8They actually show that this condition applies in many different Taylor rule formulations.
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uncorrelated.9

Our first and simplest set of expectations uses an AR(1). For inflation this would look like,

πe
t = gjπt−1, πe

t+1 = g2
j πt−1. (21)

In the learning process, agents are not assumed to know the full dynamics of πt, but in our first base case

they attempt to learn the autoregressive parameter, gj. The different forecasting models in a given family

are indexed by j. The population of agents is assumed to sit on different values of gj, and learning involves

population weight shifting over time to better predictor rules. The set of values on this coefficient are

allowed to vary on the interval, gj ∈ [0, 1]. Both 0 and 1 are allowed, corresponding to the limits of white

noise, and a random walk. Similar logic applies to predicting output yielding,

ze
t = gjzt−1, ze

t+1 = g2
j zt−1. (22)

The AR(1) provides a useful test model to check our results. Also, equation 18 suggests this can be a good

approximation in the theoretical ALM for the model.

In our second set of experiments we continue to hold zt to the AR(1) format with learning. However,

we acknowledge the empirical evidence that an IMA(1,1) may be a good approximation for inflation dy-

namics as it performs reasonably well in comparison with professional forecasters in near term forecasting

experiments. Agents make predictions as if inflation follows,

πt − πt−1 = θϵt−1 + ϵt. (23)

ϵt is a standard white noise process with E(ϵt) = 0 and variance σ2
ϵ . The above process can be written in

terms of forecasts as,

Et−1(πt) = πt−1 + θϵt−1,

πt−1 = πt−2 + θϵt−2 + ϵt−1,

πt−1 = Et−2(πt−1) + ϵt−1,

9The aggregation of expectations as performed here, and in many other papers should always be viewed cautiously as their appli-
cation in a standard New Keynesian macro model involves a large number of assumptions (see Branch & McGough (2009). Brock &
Haslag (2015) is an example of detailed micro level analysis of inflation with heterogeneous forecasters.
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and

ϵt−1 = πt−1 − Et−2(πt−1).

Substituting into the previous equation gives,

Et−1(πt) = πt−1 + θ(πt−1 − Et−2(πt−1))

finally, with our notation,

πe
t = −θπe

t−1 + (θ + 1)πt−1, (24)

which corresponds to a standard exponential filter with gain parameter equal to (θ + 1) or,

πe
t = (1 − hj)π

e
t−1 + hjπt−1. (25)

Under the assumption of an integrated process, the expectation at t + 1 given t − 1 information is

πe
t+1 = πe

t . (26)

Again, hj is the model parameter that agents will be trying to learn.

As in a typical social learning model it is assumed that there is a population of forecasting agents

following models with parameters gj and/or hj depending on the simulation. A given fraction of the

population, or weight, sits at each parameter, and final forecasts are a weighted average of each of the

individual predictors. These become the aggregate expectations used in the model dynamics. For example,

πe
t =

J

∑
j=1

wjπ
e
t,j (27)

represents the aggregate one period ahead inflation forecast. The variable wj represents the weight on

predictor j, and J is the total number of predictive models. The individual predictors, represented with

πe
t,j are not updated every period. They acknowledge that real forecasts are “sticky”, and they are updated

each period with a fixed update probability, pupdate. This both reflects results from actual forecasters, and

individual surveys, as well as making sure the learning algorithms don’t try to synchronize with agent

forecasting behavior.
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3.4 Learning dynamics

The dynamic learning model is computational, but designed to be simple and tractable. The learning frame-

work is a simplified version of other social learning methods. It is a bridge between the more complex, open

ended genetic algorithm (GA) models as used in ABK, and simpler heuristic switching models (HSM) in

which agents chose the best model from a small finite set of possibilities.10 The model attempts to construct

a large, albeit finite, space of models that span most reasonable forecasting possibilities.11

Rule selction is closely aligned with the GA space which uses a pairwise tournament selection as op-

posed to the discrete choice methods common in HSM modeling. In each period each rule is paired with

another rule. Their performance is compared, and a fraction of the weight from the weaker rule is trans-

ferred to the stronger rule. This can often be a small set of models, on the order of 2-4. We follow this

approach here, enumerating models over the single forecast parameter indexed by j, gj and hj.

As in most learning models, model performance, or fitness ( f ), is measured as mean squared error

(MSE) off the forecast target,

f j =
1
T

T

∑
t=1

(πt − πe
t )

2. (28)

This flat sample average is not feasible, so it is estimated in real time with a constant gain recursive algo-

rithm that would map directly into more complicated forms from recursive least squares learning,

ft,j = (1 − g f ) ft−1,j + g f (πt − πe
t )

2, (29)

for all models j, at each period t.

In each period the learning algorithm sweeps through all rules j, and for each one chooses a random

partner, k, from the set of rules. If ft,k < ft,j, then a fraction of the weight on rule j is moved to rule k.

This fraction will be fixed to fswitch for all runs. For example, if 0.20 fraction of the population is on rule 1,

and rule 2 is estimated to be better, than fswitch ∗ 0.20 weight is moved from rule 1 to rule 2. This learning

dynamic stays close to the tournament selection methods of ABK. It also is related to the discrete choice

dynamics used in many agent-based models. We find this method to be a good combination of simplicity

and effectiveness for our highly stylized models.

10The origins of this methodology go back to Brock & Hommes (1997) and Lux (1998).
11An example of this strategy in finance is LeBaron (2021).
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4 Results

4.1 Parameters, benchmarks, and calibration

The model is now ready to be implemented. For all cases we will be using the three equation model

described in section 3. We follow the expectation timing, and sequential nature described in that section.

Table 4 summarizes the parameter values used. The first set, [β, σ, κ], represent the core NK parameters

and are drawn directly from ABK, who get these from an early benchmark in Woodford (2003). The most

critical parameters in the model are the Taylor rule parameters, ϕπ and ϕz. We will be using many different

values for these, as we are interested in how the learning model interacts with changes in monetary policy.

We will concentrate on the pair (ϕπ , ϕz) = (1.0, 0.05) for many runs since they are in a reasonable range,

and generate some interesting results. We set the autoregressive parameter for the shock, ρ to 0.35 which is

again drawn from these earlier papers. We chose to calibrate the size of the shocks in the process to bring

the variability of inflation and output close to that in the U.S. time series. This sets σrn = σϵ/
√

1 − ρ2 =

0.70. Our calibration experiment for this parameter will be presented shortly. Our simulations are run for

T = 20, 000 quarters, and we find this gives the models plenty of time to settle into a steady state. When

we present cross sectional averages and standard deviations over several runs we use a cross section of

N = 25.

The parameter range for our AR(1) forecasters is set to [0, 1], and there are 101 rules spread uniformly

across this range with a step size of 0.01. It is important to note, that we include values of 0 and 1, which

correspond to a white noise, and random walk predictors, respectively. We are not considering either

explosive, or negative parameters in the AR model. For the IMA model the gain parameter is allowed to

vary between [0.05, 1] again with a step size of 0.01. At the largest extreme, it is also a pure random walk.

On the low side, it is not allowed to go to zero, since this implies a constant predictor.

The fraction of weight that is switched when an improved rule is detected is fswitch = 0.05. This implies

a relatively small amount of shifting agents. It keeps the model from thrashing around too much, but still is

large enough to get us reasonable convergence in most cases.12 The value pupdate defines the probability that

agents update their actual forecasts each period. It will be held at 0.5 for all runs. Finally, g f represents the

gain value for the rule fitness updates. It also is fixed for all runs, and was determined to give a relatively

smooth level of rule selection as models settle into steady states.

12This parameter might be considered an equivalent to the “intensity of choice” parameter in many agent-based models. It deter-
mines how strongly changes in fitness get reflected in changes in populations.
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We also will be using our multiple forecasting models in different situations. We concentrate our work

most heavily on inflation forecasts. For all runs the output forecast models will stay with the simple AR(1)

mechanism. For inflation we will start with the AR(1) as our baseline, but will move to the IMA(1,1)

model to see if it can generate more realistic series. Finally, we will explore situations where both types of

predictors are active for inflation modeling. In these cases we want to know when and where the strategies

might drive each other out of existence.

Our first set of simulations tests the model structure, and the learning components of the model to

make sure the setup is functioning in the rational expectations benchmark. The model will be run using

AR(1) forecasts for both inflation and output, as they are in the benchmark simulations of ABK. Agent

expectations are set using equation 18 where all future expectations are linear functions of the natural rate,

rn
t , and the PLM and ALM for inflation and output both follow an AR(1). Table 5 gives the results for a set

of runs using these criteria. Keep in mind that here, the expectations are not learned, and are fixed to their

theoretical values. The table fixes the noise level σr = 0.7. We will show later that this is a reasonable level

for the shock noise.

Since this table structure will be used in several future runs, it is important to describe it here. The first

two columns correspond to the parameters in the Taylor rule, ϕπ and ϕz. The third column, “explode”,

reports the fraction of runs which are exploding (unstable).13 Since in this set of runs, the expectations are

locked down, the fraction of explosive runs is zero by design. The fourth column is the “E-stability” condi-

tion described in equation 20. The sign of this condition will often be critical in determining the theoretical

model conditions for stability and learnability. The next three columns report the first order autocorrelation

ACF(πt), the first order autocorrelation of the first difference ACF(∆πt), and the mean forecasting param-

eter for the AR(1) inflation forecasts ḡ(π). The AR(1) structure of the natural rate determines the theoretical

value for the correlations and forecasting parameter for both inflation and output which should be ρ = 0.35.

It is clear in these columns that across all runs, the inflation correlations, and the predictive models line up

with this value. It is important to remember here that the predictive models are only watching the data go

by, and lining up with it. They are not “live” in the sense of being used by agents. A similar pattern occurs

for output in the columns labeled ACF(z) and ḡ(z) which show output autocorrelations, and the optimal

rule forecast parameter. All estimates are again consistent with the AR(1) model, and for both output and

inflation remain consistent across all Taylor rule parameters.

13We define explosive runs as either πt yields a value of true in the python isnan() function, or if the maximum absolute value of
inflation is larger than 10. Most explosive runs take inflation into the nan range in python.
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The final columns in table 5 report the standard deviations for the inflation and output series respec-

tively. It should be noted here that the output standard deviation is a little high as compared to values from

table 1, but most importantly the inflation variability is very low. Future experiments will be looking at

these values very carefully.

The next two tables, 6 and 7, present the basic core results of the paper. In particular, table 7 presents the

key direction for the paper in terms of how learning impacts inflation dynamics. In both cases the model

is now made live in that agents predictive models are now used as inputs into the NK model. All runs use

the calibrated value of σr = 0.7 for the exogenous noise level. Predictions feed into dynamics, which then

feed back to model accuracy and agent behavioral adjustments. This is the typical feedback cycle in any

forecasting agent-based model.

Table 6 begins with the AR model specification for both the inflation and output values. Turning first to

output, zt, there is a slight increase in the autocorrelations beyond the ρ = 0.35 to values closer to 0.40. This

is true both in the generated time series and the optimal models. This increase in autocorrelation is even

larger for the inflation series which pushes it closer to values ranging between 0.5 and 0.7 depending on

the Taylor rule parameters. The time series values are self-consistent with the AR(1) forecasting parameters

used by the agents.14 The standard deviation for the inflation series is shown in the column labeled, σπ . It

is well below actual values for U.S. inflation variability as presented in table 1. Often by more than an order

of magnitude.

Figure 6 shows the generated model time series for both inflation and output from a representative

run for ϕπ = 1.0, ϕz = 0.05, and σr = 0.7. Both series are generally uniform, and display few strong

patterns. Their possible AR(1) persistence is not obvious in these very long time series, but it is present.

Their autocorrelation patterns are presented in figure 7. The figure shows the ACF for output and inflation

along with comparisons with a simple AR(1) lined up with the first order autocorrelation. We see in both

cases the strong pattern of positive autocorrelations which is consistent with an AR(1) specification in both

cases.

Summarizing, what we see in this first set of simulations is a model generating time series which fol-

low the model specifications, and are self-consistent with the predictor models in use by the agents. The

magnitude of the autocorrelations is slightly too high in both cases from where theory predicts they should

be. Finally, the level of variability in the inflation time series is well below the actual series, and its model

14This increase in persistence for both inflation and output has an interesting connection to learning models developed in Hommes
& Zhu (2016). They see a similar pattern, but in a very different learning framework.
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specification of an AR(1) does not line up well with the actual U.S. time series. This leads us to the second

experiment where we will change the inflation prediction model family to an integrated moving average.

In table 7 we present the simulation results for the model with agents now using an IMA(1,1) model for

predicting future inflation. Output still uses the AR(1) forecasting framework. As mentioned in section 3.3

we implement this model with the mathematically equivalent, but more intuitive, form of an exponential

moving average. The results in this table are at the core of this paper’s message. We can see right away that

they are dramatically different from learning in the AR(1) world.

The first key difference is that several of the model specifications explode. These all correspond to

Taylor rules with the weakest inflation response, ϕπ = 0.90. In the stable cases we see something very

different in the generated inflation time series. First, the inflation standard deviation as increased by almost

a factor of 10 in most cases, often yielding a level of variability consistent with the actual series. For example,

at ϕπ = 1.0, ϕz = 0.05 the inflation standard deviation is 2.35 which is close to the actual data. The second

key features which have changed are the autocorrelation patterns in the inflation series. In all cases the first

order autocorrelation is almost 1, and the autocorrelation for the first differences are all negative, and in

the range of −0.1 to −0.2 which are close to what was displayed in figure 2. They correspond to a filter

gain parameter near 0.8 as reported in the column labeled ḡ(π). The autocorrelations and parameters for

output series are relatively unchanged from the AR(1) set of experiments which should be expected since

the agents are using the same forecasting model.

Figure 8 displays the simulated time series for inflation and output. The output series looks similar

to previous case, but inflation has changed dramatically. It now shows long persistent deviations from

its mean that are much closer to what we see in actual inflation data, and are visually consistent with the

integrated model the agents are now using for their forecasts. The increase in the level of inflation variability

shows directly in the figure, and is consistent with the values from table 7.

Figure 9 turns to the time series autocorrelations to see how well they line up with the perceived model

specification used by agents. Output patterns have not changed as they are consistent with the simple

AR(1) process used for agent forecasting. As expected the features of inflation have changed. The level

of inflation itself is extremely persistent with a value near 1 which decays slowly. The first difference of

inflation shows a small negative autocorrelation of about −0.2 at the first lag, and then drops to zero after

this. This is perfectly aligned with the IMA(1,1) used by agents, and shown to be broadly consistent with

the data.

In terms of time series specification, we have inflation lining up with our previous results. However,
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they are not quite the same. For example, for (ϕπ , ϕz) = (1.0, 0.05) we see a first order autocorrelation in the

first difference of inflation from table 7 of −0.173. Although not reported, the cross-sectional standard de-

viation of this estimate is extremely small with a value of (0.001). This comes from ergodicity, and our very

long time series. This would correspond to an IMA model parameter of θ = −0.1785 which compares to

estimated values from CPI and the GDP deflator of −0.45 and −0.39 respectively. Their estimated standard

errors are also small at (0.03), and (0.02) respectively. Although, not a formal statistical test, our model

exhibits the correct qualitative properties of an IMA(1,1), but quantitatively it is far from the data. Also,

remember that the corresponding gain level is 1 + θ, so as θ approaches zero from below our forecasting

model becomes arbitrarily close to a random walk. These parameters generate much less autocorrelation

in the real U.S. inflation series which can be seen by comparing figures 2 and 9. From these figures it is

clear that model inflation is much more persistent than actual inflation. Another quick check is revealed by

looking at figure 8. Inflation takes long swings, but some of the swings seem last for extremely long periods

of time that seem to be on the order of nearly 400 quarters, or 100 years. So a kind of rough quick check

shows quantitatively that the model generates too much persistence inflation relative to the data.15

All the early runs presented have used a fixed noise level for the exogenous natural rate shocks, σr =

0.7. This level was determined to line up the variability of inflation and output to the U.S. data presented in

table 1. Table 8 shows how this noise level was determined. The previous run cross sections are simulated

in this case using the IMA forecast specification from table 7. The Taylor rule parameters are fixed at one

of the central values of (ϕπ , ϕz) = (1.0, 0.05). The noise level, σr, is then swept through values from 0.1 to

1.0. We then look at the variability as measured by the standard deviations for inflation and output in the

final two columns. From table 1 we see both the inflation standard deviation (GPD deflator) and output

estimated near 2.5. We look for a noise level that tries to get us reasonably close on the inflation target,

since we are more interested in inflation dynamics. However, we do not want to move output to something

unreasonable. This motivates our choice of σr = 0.7. It generates an inflation standard deviation of 2.3, and

an output standard deviation of 3.1. We are pretty much on target with inflation, but slightly high on the

output side. It is clear from the table that there is no single noise level that will line up both data targets.

All future runs in the paper will stay with this level of shock variability.

It is important to summarize the results we have at this point since they are at the core of the paper.

The basic model is simulated with agents using an AR(1) model for forecasting output. Their forecasts

15One needs to be careful with this comparison, since our benchmark for comparison is a nonstationary model, and our simulation
generates stationary time series by design. Of course, in the actual data we do not know what the true process is for inflation.
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for inflation use both an AR(1) model which is motivated by theory, but also an IMA(1,1) model which is

motivated by the data. In both cases the models generate time series which are self-consistent with the

forecasting model, either AR(1) or IMA(1,1). In the case of the AR(1) inflation forecast, inflation variability

is well below the data, and the time series dynamics follow a simple AR(1) which is not consistent with

the data. This changes with the IMA(1,1) specification, yielding time series which are much more realistic.

In the remainder of the paper will explore many of the details about what is happening in the learning

dynamics around this model.

4.2 Dual model learning

The results in the previous section suggest a mechanism for a self-consistent learning model generating

realistic inflation dynamics. The model is still slightly contrived in that it forces the integrated model on

the learning agents. They have no choice but to use something in its very specific class. In the extreme they

could perceive a random walk for inflation (gain level of 1), or converge to a very long range mean (gain

level near 0). There is no option for even considering other models. This section allows for agents to choose

between the AR(1) and the IMA(1,1) forecast specifications using the ones that best fit their generated data.

Table 9 takes the previous simulation runs, but now agents are able to chose from a family of AR(1)

forecasters or the IMA(1,1) model. It is a combination of the two previous forecasting experiments in one

place.16 The table presents many similar results to table 6 with output close to that from the basic AR(1)

learning world. The table incorporates several extensions from the previous table. The column labeled

“integrated” indicates the mean model weight put on the integrated forecasting rules. The values here are

often close to zero which indicates agents have converged to the AR(1) forecast set, and its more stable

inflation output. There is one exception. For the parameters of (ϕπ , ϕz) = (1.0, 0.0) the agents prefer the

integrated forecast. Results in this case show a highly persistent inflation series, and a small, but negative

autocorrelation for the first difference which is consistent with results from previous IMA learning exper-

iments. The table prints out one parameter for the inflation forecast rules in ḡ(π). This number varies

depending on the dominant forecast rule in use. When this is an AR rule, it represents the AR forecasting

parameter, and when it is the integrated rule, it is the gain from the integrated forecast. This makes these

numbers directly comparable to the previous tables.

Some insight into what is going on can be seen in figure 10. This figure takes a single model run for

16One small technical difference here is that the range of AR models is now held below 1.0 in parameter space. This is because that
parameter corresponds to a pure random walk, and that is already covered when the gain parameter is 1.0 in the set of filtering rules.
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(ϕπ , ϕz) = (1.0, 0.05) and displays the final mean squared errors (MSE) for the two different forecasting

models across their parameter ranges. The AR model is dominant here, so it is clear why most of the runs

lock down on this option. The minimum MSE value is roughly consistent with the run averages presented

in table 9 showing ḡ(π) of 0.64.

If agents are started with a uniform prior across all the learning models, it looks likely they will be

drawn to the basic AR forecasters. Is there any possible route to a convergence to the IMA model, and is

there any possibility for some kind of path dependence in learning? This is explored in the next experiments

which “burns in” the initial time series patterns using IMA learning only during the first 5000 quarters. At

this point learning is opened up to either model and agents are free to drop back to the AR(1) model if it is

shown to do better. It is a simple experiment to understand if the learning dynamics is globally attracted to

one single model, or if there is only local attraction where agents can get stuck with the IMA model.

In table 10 we see the output of these experiments. The results change dramatically. Agents lock down

on the IMA model and stay there as shown by the “integrated” column. The estimated and model param-

eters are very close to the original IMA forecasting parameters from table 7. Inflation is highly persistent,

looks like an IMA(1,1) process, and is often close to the variability of the data as seen from the column

labeled σπ . The presence of the AR(1) forecast possibility has had little or no impact on the results.

Figure 11 repeats the previous comparison for the relative forecast performance. This is a much trickier

plot to perceive. It is hard to see, but the integrated model is doing the best at a gain level near 0.6. The set

of AR models does present a near competitor model at value of 0.99 which represents a near random walk

for inflation, so it is not exactly choosing a stationary model here. The random walk and the IMA(1,1) are

very close both in terms of performance since they are not too far from each other in model space.

These runs of the competing forecasting models along with the IMA burn in form a core benchmark

model for our paper. They allow for all the interesting dynamics that integrated inflation forecasting gives,

but its existence is there for interesting reasons. The agents have locked down on a potentially suboptimal,

and volatility magnifying, forecasting system in the basic NK model. Instability is an endogenous feature of

the interaction between forecasts and model dynamics. It is essentially a sunspot equilibrium in the usual

macroeconomic sense. For these reasons we will examine some other details of this model run.

In figure 12 we plot histograms of where the forecast model weight sits for the different forecasts.

Output reports the distribution around the AR parameter, and the inflation does the same for the gain

parameter. This is done for one run with (ϕπ , ϕz) = (1.0, 0.05). Technically, the model also includes AR

forecasters for inflation, but in this run the weights on all of these were zero, so plotting them was unnec-
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essary. The graph shows relatively little forecast dispersion in both cases. The AR parameter is distributed

tightly around a value slightly larger than 0.40, and the inflation gain is slightly more disperse, and dis-

tributed around a value slightly larger than 0.8. The picture is consistent with the 25 run summary in table

10 which gives values for these forecast parameters of 0.41, and 0.81 respectively. Figure 13 presents the

time series of the weighted forecast parameters for inflation and output forecasts. The time series converge

to their respective values after a relatively short period of time, and remain stable after this point.17 There

are no obvious large swings, so the dynamics of the market can be viewed as coming from fixed stable

versions of the forecasting models, and not complicated dynamics across different models over time.

Given the importance of this set of simulation runs it is important to delve a little deeper into what

we are seeing in terms of forecast rule performance. Table 11 takes the same set of runs from table 10

and checks the forecast rules using tests similar to those we applied to the professional forecaster data.

The table looks at the inflation forecasts only. For clarity the table eliminates the three sets of parameters

which generated explosive runs. We look at several critical forecast performance measures which include

forecast bias, forecast error autocorrelation, and root mean squared prediction errors (RMSE). The sample

moments are means estimated from the 25 runs, each using the last half of the 20,000 length time series.

The standard deviation across the 25 simulations is presented in parenthesis for each value. The first two

of these values measure the efficiency of our forecasts. Bias is represented by our model estimate of E(et,π)

in the table. It shows no evidence for bias at all in the weighted forecast rules. The next column, labeled

ACF(et,π) displays the autocorrelation of the model forecast errors. Correlations in these errors would also

indicate some form of irrationality or inefficiency in our predictors. For all our Taylor rule specification

these are also essentially zero. To an outside researcher testing these models they would see no evidence

of irrationality. This is interesting since the optimal models are estimated evolutionarily, and not through

an online recursive least squares process. This simple reinforcement learning process in the model yields

very efficient looking predictors. Similar patterns hold for the output predictors in the columns E(et,z) and

ACF(et,z).

The RMSE errors for the two predictors are presented in the RMSE columns, alongside the target stan-

dard deviation for comparison. Obviously, the standard deviation is essentially the RMSE using the sample

mean. The models are doing generally very well in that the RMSE is much lower than the standard devi-

17Convergence may appear impressive in this figure, but it should be noted that this model is run for 20, 000 quarters. A quick
eyeball estimate suggests the model takes almost 200 quarters, or nearly 50 years, to get the gain parameter above 0.7. In actual data
50 years of time series is available, but this suggests that model convergence would only start to appear in the late 20th century. The
speed of learning in social learning models can be slow, and this issue remains an important research question.
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ations. This should be as expected since the agents appear to have reasonable models and very long time

series to use them with.

Comparisons with the survey of professional forecasters (SPF) from table 3 are interesting. CPI and

trimmed CPI are both slightly less volatile than the simulations, and their time series dynamics are much

more complex (if not nonstationary). Their bias is also low as in the simulations, but they generate a lot

of forecast error autocorrelation. This is well known about forecasters, but its comparison to the simulated

agents is quite stark here. Finally, they do produce larger RMSE forecast errors. This may occur because

the nature of their forecasting problem is much more difficult than in a basic simulated NK model facing

only one exogenous shock. However, the fact that their errors are so persistent, even at the short horizon,

suggests this feature may be special to human professional forecasters.

In all cases our cross sectional standard deviations that are displayed in parenthesis in table 11 show

very low dispersion across runs. This confirms the precision with which we are estimating the sample

moments, and it also backs up assumptions about ergodicity in our runs. For example, the estimated

forecast error autocorrelations for (ϕπ , ϕz) = (1.0, 0.05) is 0.009, and in this case the standard deviation of

(0.008) shows that the runs are comfortably centered around zero in the cross sectional distribution. Also,

our inflation volatility estimates are very reliable. For the same policy parameters we show a volatility level

of σπ = 2.37, with a cross sectional standard deviation of (0.182), showing that the inflation volatility levels

are very consistent across all 25 runs. As a practical matter, the cross sectional simulations are probably

unnecessary given the strong ergodic properties of these models.

4.3 Model stability

We have generally been dealing with issues of model stability in this paper. In this section we look at these

in more detail. We have seen two parts to this problem. First, we have seen that some of our simulations

generate significantly more volatility by shifting agent predictive models to the integrated and nonstation-

ary predictors. Second, we also have seen some models exploding for different Taylor rules. In ABK they

showed that the connection of explosive models to the e-stability conditions was not that sharp in a so-

cial learning setting. We turn first to the question of forcing our models away from the integrated world

through monetary policy.

Table 12 takes our runs with the dual learning approach from table 10. This is the case with the dual

models operating, but with the initial IMA burn in period. The question is whether changing the Taylor
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policy parameters can coax the learners back over to the more stable AR model equlibrium. The table

looks at two different output parameters, ϕz = (0, 0.05), and steadily increases the inflation responsiveness,

ϕπ , from 1.0 to 4.0. For the case of ϕz = 0.0 the fraction of integrated runs, “integrated”, quickly drops

from 1.0 to 0.0 as ϕπ reaches 1.75. At this point the results mimic those of basic AR learning along with

relatively low inflation volatility. For the case of ϕz = 0.05 there is a similar reduction, but it is slower. The

fraction of integrated runs doesn’t reach 0.0 until ϕπ = 2.5. It is important note for feasibility this is a very

large value for the inflation reaction implying a more than 2 for 1 response in the nominal interest rate to

inflation. It would probably be out of the range of what policy makers would ever implement. Also, in

this transition the level of inflation volatility, as measured by standard deviation, falls by nearly a factor of

10. This is a much larger reduction than some of the fine tuning of inflation volatility that appears to be

happening for larger values of ϕπ . The large impact is driven by the fact that this policy change does not

just marginally change the feedback from inflation to future nominal interest rates, but it radically moves

the entire forecasting equilibrium from one model to another.

In our next two tables we look directly into the e-stability conditions and how well they predict the

behavior of our learning systems. These experiments are important for policy makers since they suggest the

boundary for which monetary policy might fail explosively. Our model is quite different from the simpler

learning systems that sit behind e-stability conditions, and in particular those considered in Bullard & Mitra

(2002). In some of their experiments ABK show that with social learning parameter combinations that

are unstable under e-stability are actually stable in their simulations. We are interested what the stability

situation looks like for our models,

In table 13 we look at the dual model learning case where the model is started with equal weighting

across all rules. Previously, in table 9 we showed that for many of our parameter choices this case converged

to agents using AR inflation forecasts. The table also showed that in some cases the model was unstable and

exploding. This seemed related, but not perfectly, to the signs on the e-stability conditions. Now we turn

to a more extensive test. In table 13 we connect the analytic stability condition to our runs. The e-stability

condition (equation 20) is clearly connected to the probabilities of model instability, but it is not exact. All

e-stable cases ( E-stable > 0 ) give us stability, but we have some analytically unstable cases with (E-stable

< 0) where we have stable model runs. There are several cases with ϕz = 0.05 and ϕπ ≥ 0.6 that are all

stable from a simulation perspective, but unstable according to the e-stable condition. This is an interesting

result in that it lines up with some cases in ABK where social learning seemed to have stronger stability

implications. Here, it can be thought of as coming from the fact that a set of expectations that is well settled
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into the stationary AR parameter draws the model into a stable outcome from which it cannot escape.

In table 14 we turn to the e-stable condition in cases where the model converges to the IMA predictors.

The table again looks at runs for the dual model learning situation with the IMA startup period. We present

the e-stable value from equation 20, along with the fraction of our 25 simulation runs which explode. As

can be seen in the table the e-stable condition aligns perfectly with model stability. A negative value of

e-stable implies an explosive model. It is also interesting that there are no cases where we have fractions

of explosive runs. Models are either unstable or stable which implies a very tight connection between this

type of social learning model, and some of the underlying learning analytics. This is not the case for ABK

where there can occasionally be fractions of models with stability under certain parameter combinations.

4.4 Agent heterogeneity

Our model naturally generates a set of heterogeneous model predictors. We have seen a first glimpse of

this in figure 12 which shows a relatively compact distribution of our forecasters. We explore this issue

of agent heterogeneity more completely in table 15. This table concentrates on our benchmark set of runs

with (ϕπ , ϕz) = (1.0, 0.05) as we’ve used before. The model structure is our dual learning model with the

initial IMA(1,1) burn in period of 5000. Remember in table 10 we saw that this converged reliably to the

IMA/integrated model. The first line in table 15 is an exact replication of our previous runs. It adds one ex-

tra column labeled σ(E∗(π))/σπ . This represents the cross sectional heterogeneity of the inflation forecasts

as measured by the standard deviation normalized by the inflation time series standard deviation. These

estimates should be compared with a similar number at the bottom of table 3. This value is 0.34 for the CPI

forecasts and 0.61 using the trimmed CPI forecasts. The comparable value from the simulation, displayed

in the right most column, is significantly lower with a value of 0.015. The standard model generates agent

heterogeneity levels which are well off that from the professional forecasters.

One possible solution is to add noise to the forecasters. This is done by adding a random amount of

noise to the MSE of the forecast each period. The level of noise is normalized by the mean MSE across the

inflation model as in

σMSE = fnoiseE(MSE), (30)

where f is the parameter which will be swept from 0 to 0.20 in the table. Each rule then has noise added to its

performance which follows a Gaussian with zero mean, and standard deviation given by σMSE. Results for

different values of fnoise (labeled noise in table 15) are presented. It is clear that as the noise level increases
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forecast dispersion increases as shown in the last column. The general structure of the model appears not

to change much, but there is a strong drop in inflation volatility from 2.49 to 0.82 as the model noise level

hits its maximum. Increases in forecast dispersion come with a price of smoothing out inflation forecasts,

and stabilizing the time series output of the model.

Figure 14 shows a time series of the rule dispersion measure for the no noise case, and the model using

a fnoise = 0.05 fraction noise level. The no noise case shows that the low rule dispersion is consistent across

the entire run and remains well below the value of 0.34 from the data. It is interesting that there is initially

substantial dispersion in rules, but this drops off quickly as agent learning takes place. The results are

more complicated in the noise case which ends up with a value near 0.15 which is consistent with the cross

sectional summary from table 15. This model is initially trained with inflation forecasts using only the IMA

model until period 5000. After that the agents are allowed to chose between the IMA model and the AR

model. In the case of no noise this period gives a barely visible impact on the time series. In the noise

case the change is large with a significant jump in forecast heterogeneity as agents spread out across rules.

We can see further evidence of this in figure 15 which shows the cross sectional dispersion for the inflation

forecasts at the end of the run. Most forecasts remain with the IMA model, but they are now spread across

many gain parameters. Also, the model allows for some leakage into a few very persistent (near random

walk) AR models as well. This rule dispersion is consistent with the MSE comparisons from figure 11 that

showed a very flat range across many gain parameters, and a near equivalence between the large parameter

AR models and many of the IMA models. This lack of model specification clarity means that when noise is

added agents are not very confident in which models to use, and forecast dispersion is possible.

5 Conclusions

We have analyzed a simple agent-based approach in a New Keynesian model with learning agents. We

build off models with social learning along with heterogeneous agent approaches with a form of tourna-

ment selection. Our boundedly rational agents form forecasts by choosing rules from a reasonable set of

tractable forecasting models. Our goal is to replace and reinvigorate Arifovic et al. (2012) with a slightly

different technology. Our new set of agents shows a strong tendency for self-confirming their beliefs about

time series dynamics even though we are operating in a space where we cannot be completely sure if per-

ceived laws of motion in the model are lining up with the simulation actual laws of motion. We perform

many tests showing that forecasting agent perceptions would not be disturbed by the time series they gen-
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erate.

Our most important results are concerned with modifying our inflation forecasts to predictive rules

which align with well known observed dynamics in U.S. macro time series. The use of an IMA model

for forecasting, as implemented with an exponential filter, radically changes our model time series to re-

flect these expectations. Inflation volatility increases to reasonable levels, and also increases persistence.

Analysis of the time series reveals structure that would by characterized as an IMA process by standard

identification and forecast error analysis. We have generated a sunspot equilibrium which diverges from

the minimum state variable representation, and generates very realistic dynamics. All this is done with a

stripped down New Keynesian model operating with only one shock.

Agent-based modeling is often concerned with coevolution, or how different strategies evolve against

each other. We play the AR and IMA models against each other in several time series races. Generally,

the AR dominates, but if the agents are started using IMA forecasts initially, then the AR types cannot

successfully invade. The system remains stuck in the higher volatility IMA steady state. We show that for

certain policy rules the dynamics can be shifted back to the AR steady state, but this might require a very

large response of the nominal interest rate to inflation.

One of the more interesting results in ABK is that convergence is possible in some cases where the e-

stability conditions do not hold. We explore this for our models, and get mixed, but interesting results. For

our AR models we see strong convergence for many unstable policy values. We conjecture that this might

be related to the “learning support” that does not allow for explosive parameters in the model. When we

look at the more empirically valid IMA models, we find the the e-stability conditions align exactly with our

simulations in that they perfectly forecast when models are unstable and do not converge. Therefore, our

results are somewhat more cautious than those of ABK in that for some types of learning models the classic

e-stability conditions are relevant.

ABK also look at possible sunspot equilibria in their learning models. They find that certain common

factor sunspots are possible generating prediction models relying on additional state variables. We view

our IMA equilibrium as a close relative to a sunspot, but technically it is different. We do generate inflation

dynamics showing a large increase in variability, but it does this by conditioning on a particular model, and

not by adding an extra information variable as is usually done in a classic sunspot model.

Finally, we look into the issue of forecast heterogeneity. For professional forecasters we have good

information on the dispersion of their forecasts. We estimate this value and compare with equivalent mea-

sures in our models. For our basic simulations this value may be off by almost a factor of 10, with the
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professionals generating much more heterogeneity. We were able to reduce this discrepancy by adding

noise to our agents, but even for large noise levels the computational agents were still less heterogeneous

than the professionals. This result asks some deep questions about the dynamics of social learning, tourna-

ment selection, and the fitness landscape of our models. However, the easy answer might be that in the real

world agents have much more data to look at than in a stylized NK model. We have made the forecasting

problem too easy.

Forecast dispersion is one of two stylized facts from the professional forecasters that we find difficult to

replicate. The other is the autocorrelation of prediction errors. In all our simulated equilibrium, the socially

learned forecasts show less autocorrelation in their errors, diverging from our empirical results with the

SPF. This element of forecast irrationality was already puzzling, but it is interesting that a simplified model

with a very crude learning mechanism does not come close to replicating this aspect of the data. We may

need to explore the forecasts at a more detailed individual level, or think more carefully about less rational

agents for our simulated forecasters.

There are still many things left to understand about this model. We have left output out of the picture

at the moment, by assuming it simply is best modeled with the rational expectations perceived law of

motion even though this may be empirically unrealistic. Also, the timing of the model is not correct. Waves

of inflation periods look realistic, but their periodicity is far longer than in real data. This needs to be

addressed. One solution is to allow ourselves more shocks. We purposefully tied our hands to a single

shock to see how we could do. Allowing for the types of shocks which are now common in most modern

macro models would probably change our data replication ability.

Agent-based modeling is fundamental to understanding the endogenous heterogeneity in models where

predicting the future is critical. The application to macroeconomic forecasting is important because it is a

policy relevant problem that is often perceived from the perspective of a homogeneous agent. Also, it is

an area where we possess relatively good data on the magnitude of forecast heterogeneity. Social learning

models, as pioneered in Arifovic (1994) remain a critical tool in understanding the varied behaviors of many

standard models when populated by diverse sets of adaptive learning agents.

28



References

Anufriev, M., Assenza, T., Hommes, C. & Massaro, D. (2013), ‘Interest rate rules and macroeconomic stabil-

ity under heterogeneous expectations’, Journal of Economic Dynamics and Control 17, 1574–1604.

Anufriev, M., Hommes, C. & Makarewicz, T. (2019), ‘Simple forecasting heuristics that make us smart:

Evidence from different market experiments’, Journal of the European Economic Association 17(5), 1538–

1584.

Arifovic, J. (1994), ‘Genetic algorithm learning and the cobweb model’, Journal of Economic Dynamics and

Control 18, 3–28.

Arifovic, J. (1996), ‘The behavior of the exchange rate in the genetic algorithm and experimental economies’,

Journal of Political Economy 104, 510–541.

Arifovic, J., Bullard, J. & Kostyshyna, O. (2012), ‘Social learning and monetary policy rules’, The Economic

Journal 123, 38–76.

Arifovic, J. & Duffy, J. (2018), Heterogeneous agent modeling: Experimental evidence, in C. Hommes &

B. LeBaron, eds, ‘Handbook of Computational Economics: Heterogeneous Agent Modeling’, Vol. 4,

North Holland.

Arifovic, J., Grimaud, A., Salle, I. & Vermandel, G. (2020), Social learning and monetary policy at the effec-

tive lower bound, Technical report, Bank of Canada.

Assenza, T., Heemeijer, P., Hommes, C. H. & Massaro, D. (2021), ‘Managing self-organization of expecations

through monetary policy: A macro experiment’, Journal of Moneary Economics 117, 170–186.

Bianchi, F., Nicolo, G. & Song, D. (2023), Inflation and real activity over the business cycle, Technical Report

31075, NBER.

Branch, W. (2004), ‘The theory of rationally heterogeneous expectations: Evidence from survey data on

inflation expectations’, Economic Journal 114, 592–621.

Branch, W. A. & Evans, G. W. (2011), ‘Monetary policy and heterogeneous expectations’, Economic Theory

47, 365–393.

Branch, W. A. & McGough, B. (2009), ‘A new Keynesian model with heterogeneous expectations’, Journal of

Economic Dynamics and Control 33, 1036–1051.

29



Branch, W. A. & McGough, B. (2018), Heterogeneous expectations and micro-foundations in macroeco-

nomics, in C. Hommes & B. LeBaron, eds, ‘Handbook of Computational Economics: Heterogeneous

Agent Modeling’, Vol. 4, North Holland.

Brock, W. A. & Haslag, J. H. (2015), Inflation dynamics and inflation uncertainty in a model with heteroge-

neous forecasts, Technical report, University of Missouri-Columbia.

Brock, W. A. & Hommes, C. H. (1997), ‘A rational route to randomness’, Econometrica 65, 1059–1097.

Brock, W. A., Hommes, C. H. & Wagener, F. O. O. (2005), ‘Evolutionary dynamics with many trader types’,

Journal of Mathematical Economics 41, 7–42.

Bullard, J. & Mitra, K. (2002), ‘Learning about monetary policy rules’, Journal of Monetary Economics 49, 1105–

1129.

Carroll, C. D. & Wang, T. (2022), Epidemiological expecations, Technical Report 30605, NBER, Cambridge,

MA.

Clements, M. P., Rich, R. W. & Tracy, J. (2023), Surveys of professionals, in R. Bachmann, G. Topa &

W. van der Klaauw, eds, ‘Handbook of Economic Expectations’, Vol. 1, Academic Press, chapter 3,

pp. 71–106.

Dawid, H. & Delli Gatti, D. (2018), Agent-based macroeconomics, in C. Hommes & B. LeBaron, eds, ‘Hand-

book of Computational Economics: Heterogeneous Agent Modeling’, Vol. 4, North-Holland.

De Grauwe, P. (2011), ‘Animal spirits and montetary policy’, Economic Theory 47, 423–457.

Evans, G. W., Honkapohja, S., Sargent, T. J. & Williams, N. (2013), Bayesian model averaging, learning and

model selection, in T. J. Sargent & J. Vilmunen, eds, ‘Macroeconomics at The Service of Public Policy’,

Oxford University Press, chapter 7.

Franses, P. H. (2020), ‘IMA(1,1) as a new benchmark for forecast evaluation’, Applied Economics Letters

27(17), 1419–1423.

Hommes, C. (2021), ‘Behavioral and experimental macroeconomics and policy analysis: A complex systems

approach’, Journal of Economic Literature 59(1), 149–219.

Hommes, C., Makarewicz, T., Massaro, D. & Smits, T. (2017), ‘Genetic algorithm learning in a New Keyne-

sian macroeconomic setup’, Journal of Evolutionary Economics 27, 1133–1155.

30



Hommes, C. & Zhu, M. (2016), Behavioral learning equilibria, persistence amplification, and monetary

policy, Technical report, University of Amsterdam.

Hyndman, R. J. & Billah, B. (2003), ‘Unmasking the Theta method’, International Journal of Forecasting

19, 287–290.

LeBaron, B. (2021), ‘Microconsistency in simple empirical agent-based financial models’, Computational Eco-

nomics 58(1), 83–101.

Lux, T. (1998), ‘The socio-economic dynamics of speculative markets: Interacting agents, chaos, and the fat

tails of return distributions’, Journal of Economic Behavior and Organization 33, 143–165.

Muth, J. (1960), ‘Optimal properties of exponentially weighted forecasts’, Journal of the American Statistical

Association 55, 299–306.

Pivetta, F. & Reis, R. (2007), ‘The persistence of inflation in the U.S.’, Journal of Economic Dynamics and Control

31(4), 1326–1358.

Smith, K. (2022), Cross-country inflation expecations evidence of heterogeneous and synchronized markets,

Technical report, Brandeis International Business School.

Stock, J. & Watson, M. (2007), ‘Why has U.S. inflation become harder to forecast?’, Journal of Money, Credit

and Banking 39(1), 3–33.

Tortorice, D. L. (2018), ‘The business cycle implications of fluctuating long run expectations’, Journal of

Macroeconomics 58, 266–291.

Vriend, N. J. (2000), ‘An illustration of the essential difference between individual and social learning, and

its consequences for computational analysis’, Journal of Economic Dynamics and Control 24, 1–19.

Woodford, M. (2003), Interest and Prices: Foundations of a Theory of Monetary Policy, Princeton University

Press, Princeton, NJ.

31



Table 1: U.S. inflation and output: Long series

π(cpi) π (deflator) Output gap
Mean 3.53 3.20 -1.51
Std 3.28 2.57 2.34
Forecast errors
RMSE(AR) 2.23 1.62 1.03
RMSE(IMA) 2.23 1.57 1.06
RMSE(RW) 2.40 1.68 1.06
Bias(AR) 0.00 0.02 -0.00
Bias(IMA) 0.04 0.03 -0.01
Bias(RW) 0.015 0.01 -0.01
ACF(1)-AR -0.11 -0.22 0.11
ACF(1)-MA 0.06 -0.01 0.01
ACF(1)-RW -0.27 -0.34 0.07

Summary statistics and forecasting errors: U.S. 1949:1 - 2022:4. Inflation is measured using CPI and GDP deflator.
Output gap is estimated as GDP/potential GDP. All series are quarterly, seasonally adjusted. Source: FRED. AR =
AR(1), IMA = IMA(1,1), and RW = Random Walk (Naive).
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Table 2: Model parameter estimates

π(cpi) π (deflator) Output growth
AR(1) 0.73 0.79 0.89

(0.03) (0.02) (0.02)
IMA(1,1) -0.45 -0.39 0.05

(0.03) (0.02) (0.02)
Gain 0.55 0.61 1.05

Parameter estimates: Quarterly, 1949:1 through 2022:4. Numbers in parenthesis are standard errors. Gain refers to the
corresponding Kalman gain for the estimated IMA(1,1) which is (1 + θ).
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Table 3: Recent data: Forecaster/model comparisons

π(cpi) π (trimmed cpi)
Mean 2.85 2.78
Std 2.21 1.24
Forecast errors
RMSE(AR) 1.98 0.79
RMSE(IMA) 2.07 0.81
RMSE(RW) 2.36 0.88
RMSE(SPF) 2.04 0.78
Bias(AR) -0.00 -0.00
Bias(IMA) 0.07 0.06
Mean(RW) 0.03 0.05
Mean(SPF) 0.12 0.05
ACF(1)-AR -0.02 -0.27
ACF(1)-IMA 0.14 -0.05
ACF(1)-RW -0.31 -0.37
ACF(1)-SPF 0.29 0.39
σ(SPF)/σ(π) 0.34 0.61

Professional forecaster comparisons: Quarterly, 1983:1 through 2022:4. All forecasts are 1 quarter ahead. CPI and
trimmed CPI. Source: FRED. AR = AR(1), IMA = IMA(1,1), and RW = Random Walk (Naive). SPF = mean 1 quar-
ter ahead forecast from the Survey of Professional Forecasters. σ(SPF)/σ(π) refers to the cross sectional standard
deviation over the forecaster set normalized by the time series standard deviation.
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Table 4: Parameter values

Parameter Value(s)
β 0.99
σ 0.157
κ 0.024
ϕπ Multiple values (1.0)
ϕz Multiple values (0.05)
ρ 0.35
σrn 0.70
T (time periods) 20000 quarters
N (cross section) 25
AR Parameter [0.00, . . . , 1.0]
Gain parameter [0.05, . . . , 1.0]
Rules (J) 100
fswitch 0.05
pupdate 0.5
g f (MSE gain) 0.001
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Table 5: AR(1) equilibrium expectations benchmark

ϕπ ϕz explode E-stable ACF(π) ACF(∆π) ḡ(π) ACF(z) ḡ(z) σπ σz

0.900 0.000 0.000 -0.002 0.351 -0.325 0.350 0.351 0.350 0.840 5.719

1.000 0.000 0.000 0.000 0.346 -0.327 0.346 0.346 0.346 0.815 5.550

1.100 0.000 0.000 0.002 0.350 -0.324 0.350 0.350 0.350 0.794 5.402

0.900 0.050 0.000 -0.002 0.345 -0.328 0.345 0.345 0.345 0.596 4.054

1.000 0.050 0.000 0.001 0.349 -0.326 0.351 0.349 0.351 0.586 3.991

1.100 0.050 0.000 0.003 0.352 -0.320 0.352 0.352 0.352 0.573 3.901

0.900 0.100 0.000 -0.001 0.352 -0.323 0.350 0.352 0.350 0.463 3.151

1.000 0.100 0.000 0.001 0.349 -0.325 0.349 0.349 0.348 0.454 3.092

1.100 0.100 0.000 0.003 0.350 -0.322 0.350 0.350 0.351 0.448 3.051

Equilibrium expectations: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. “explode” reports

the fraction of runs exploding in an unstable fashion. “E-stable” is the learning stability condition. The ACF columns

report the first order autocorrelation for π (level and first difference) and z. The two values for ḡ are the weighted

forecast parameters across all agents for π and z. These are the fitted AR(1) values from the learning algorithm The

final two columns present the standard deviations for [πt, zt].

36



Table 6: AR(1) learning

ϕπ ϕz explode E-stable ACF(π) ACF(∆π) ḡ(π) ACF(z) ḡ(z) σπ σz

0.900 0.000 0.000 -0.002 0.777 -0.150 0.771 0.456 0.457 0.591 4.136

1.000 0.000 0.000 0.000 0.740 -0.160 0.737 0.448 0.447 0.530 4.059

1.100 0.000 0.000 0.002 0.707 -0.178 0.706 0.438 0.437 0.491 3.973

0.900 0.050 0.000 -0.002 0.657 -0.205 0.660 0.418 0.419 0.369 3.160

1.000 0.050 0.000 0.001 0.629 -0.216 0.630 0.412 0.412 0.354 3.119

1.100 0.050 0.000 0.003 0.606 -0.222 0.609 0.404 0.405 0.342 3.078

0.900 0.100 0.000 -0.001 0.600 -0.230 0.604 0.399 0.399 0.284 2.565

1.000 0.100 0.000 0.001 0.581 -0.236 0.579 0.398 0.394 0.277 2.543

1.100 0.100 0.000 0.003 0.579 -0.234 0.579 0.396 0.394 0.274 2.520

AR(1) learning: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. “explode” reports the fraction of

runs exploding in an unstable fashion. “E-stable” is the learning stability condition. The ACF columns report the first

order autocorrelation for π (level and first difference) and z. The two values for ḡ are the weighted forecast parameters

across all agents for π and z. These are the fitted AR(1) values from the learning algorithm The final two columns

present the standard deviations for [πt, zt].
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Table 7: IMA(1,1) learning

ϕπ ϕz explode E-stable ACF(π) ACF(∆π) ḡ(π) ACF(z) ḡ(z) σπ σz

0.900 0.000 1.000 -0.002 - - 0.525 - 0.520 - -

1.000 0.000 0.000 0.000 0.994 -0.119 0.871 0.448 0.446 3.381 4.065

1.100 0.000 0.000 0.002 0.983 -0.136 0.854 0.434 0.433 1.966 3.968

0.900 0.050 1.000 -0.002 - - 0.544 - 0.540 - -

1.000 0.050 0.000 0.001 0.992 -0.173 0.808 0.413 0.413 2.346 3.119

1.100 0.050 0.000 0.003 0.984 -0.178 0.802 0.408 0.408 1.566 3.082

0.900 0.100 1.000 -0.001 - - 0.584 - 0.579 - -

1.000 0.100 0.000 0.001 0.991 -0.200 0.775 0.396 0.396 1.846 2.540

1.100 0.100 0.000 0.003 0.984 -0.200 0.770 0.392 0.392 1.334 2.519

IMA(1,1) learning: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. “explode” reports the fraction

of runs exploding in an unstable fashion. “E-stable” is the learning stability condition. The ACF columns report the first

order autocorrelation for π (level and first difference) and z. The two values for ḡ are the weighted forecast parameters

across all agents for π and z. For output these are the AR(1) forecast parameter, and for inflation is the filter gain

parameter. The final two columns present the standard deviations for [πt, zt].
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Table 8: IMA(1,1) noise calibration

ϕπ ϕz σr explode E-stable ACF(π) ACF(z) σπ σz

1.000 0.050 0.100 0.000 0.001 0.993 0.414 0.342 0.447

1.000 0.050 0.200 0.000 0.001 0.992 0.412 0.654 0.890

1.000 0.050 0.300 0.000 0.001 0.993 0.413 1.025 1.338

1.000 0.050 0.400 0.000 0.001 0.993 0.418 1.359 1.789

1.000 0.050 0.500 0.000 0.001 0.993 0.413 1.701 2.224

1.000 0.050 0.600 0.000 0.001 0.992 0.415 2.022 2.678

1.000 0.050 0.700 0.000 0.001 0.992 0.414 2.375 3.120

1.000 0.050 0.800 0.000 0.001 0.993 0.409 2.760 3.557

1.000 0.050 0.900 0.000 0.001 0.993 0.414 3.063 4.016

1.000 0.050 1.000 0.000 0.001 0.993 0.413 3.388 4.455

IMA(1,1) noise calibration: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. σr is the noise level

represented by the standard deviation of the real interest rate. “explode” reports the fraction of runs exploding in an

unstable fashion. “E-stable” is the learning stability condition. The ACF columns report the first order autocorrelation

for π (level and first difference) and z. The two values for ḡ are the weighted forecast parameters across all agents for

π and z. These are the fitted AR(1) values from the learning algorithm The final two columns present the standard

deviations for [πt, zt].
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Table 9: Dual model learning

ϕπ ϕz explode integrated E-stable ACF(π) ACF(∆π) ḡ(π) ACF(z) ḡ(z) σπ σz

0.900 0.000 1.000 1.000 -0.002 - - 0.989 - 0.520 - -

1.000 0.000 0.000 1.000 0.000 0.994 -0.116 0.880 0.448 0.447 3.376 4.063

1.100 0.000 0.000 0.080 0.002 0.741 -0.170 0.730 0.438 0.436 0.615 3.983

0.900 0.050 0.000 0.000 -0.002 0.658 -0.202 0.659 0.421 0.421 0.369 3.161

1.000 0.050 0.000 0.000 0.001 0.636 -0.212 0.639 0.413 0.413 0.357 3.125

1.100 0.050 0.000 0.000 0.003 0.625 -0.218 0.627 0.411 0.411 0.349 3.084

0.900 0.100 1.000 1.000 -0.001 - - 0.992 - 0.583 - -

1.000 0.100 0.000 0.000 0.001 0.593 -0.231 0.595 0.399 0.400 0.280 2.550

1.100 0.100 0.000 0.000 0.003 0.580 -0.235 0.581 0.395 0.394 0.275 2.528

Dual model learning: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. “explode” reports the

fraction of runs exploding in an unstable fashion. “integrated” reports the fraction of runs where agents perceive

the series as following the integrated process. “E-stable” is the learning stability condition. The ACF columns report

the first order autocorrelation for π (level and first difference) and z. The two values for ḡ are the weighted forecast

parameters across all agents for π and z. These are the fitted AR(1) values from the learning algorithm The final two

columns present the standard deviations for [πt, zt].
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Table 10: Dual model learning, IMA start period

ϕπ ϕz explode integrated E-stable ACF(π) ACF(∆π) ḡ(π) ACF(z) ḡ(z) σπ σz

0.900 0.000 1.000 1.000 -0.002 - - 0.989 - 0.520 - -

1.000 0.000 0.000 1.000 0.000 0.994 -0.128 0.866 0.445 0.444 3.247 4.053

1.100 0.000 0.000 1.000 0.002 0.983 -0.136 0.857 0.431 0.432 1.949 3.970

0.900 0.050 1.000 1.000 -0.002 - - 0.997 - 0.540 - -

1.000 0.050 0.000 1.000 0.001 0.993 -0.169 0.810 0.417 0.416 2.370 3.128

1.100 0.050 0.000 1.000 0.003 0.983 -0.180 0.798 0.408 0.408 1.537 3.080

0.900 0.100 1.000 1.000 -0.001 - - 0.999 - 0.579 - -

1.000 0.100 0.000 1.000 0.001 0.992 -0.202 0.774 0.395 0.397 1.905 2.541

1.100 0.100 0.000 1.000 0.003 0.985 -0.203 0.766 0.393 0.393 1.333 2.521

Dual model learning, IMA start period: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. “ex-

plode” reports the fraction of runs exploding in an unstable fashion. “integrated” reports the fraction of runs where

agents perceive the series as following the integrated process. “E-stable” is the learning stability condition. The ACF

columns report the first order autocorrelation for π (level and first difference) and z. The two values for ḡ are the

weighted forecast parameters across all agents for π and z. These are the fitted AR(1) values from the learning algo-

rithm The final two columns present the standard deviations for [πt, zt].
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Table 11: IMA(1,1) forecast performance

ϕπ ϕz E(et,π) ACF(et,π) RMSE(π) σπ E(et,z) ACF(et,z) RMSE(z) σz

1.000 0.000 0.000 0.003 0.356 3.247 -0.006 -0.008 3.630 4.053

( 0.001) ( 0.010) ( 0.003) ( 0.352) ( 0.059) ( 0.008) ( 0.024) ( 0.045)

1.100 0.000 0.000 -0.001 0.351 1.949 0.002 -0.005 3.583 3.970

( 0.001) ( 0.017) ( 0.003) ( 0.205) ( 0.018) ( 0.010) ( 0.028) ( 0.043)

1.000 0.050 -0.000 0.009 0.278 2.370 -0.008 -0.003 2.844 3.128

( 0.000) ( 0.008) ( 0.001) ( 0.182) ( 0.035) ( 0.005) ( 0.011) ( 0.022)

1.100 0.050 -0.000 0.009 0.275 1.537 -0.007 -0.003 2.811 3.080

( 0.000) ( 0.008) ( 0.002) ( 0.104) ( 0.016) ( 0.006) ( 0.020) ( 0.031)

1.000 0.100 0.000 0.006 0.228 1.905 0.005 -0.005 2.335 2.541

( 0.000) ( 0.010) ( 0.002) ( 0.223) ( 0.024) ( 0.007) ( 0.012) ( 0.018)

1.100 0.100 0.000 0.011 0.227 1.333 -0.004 -0.001 2.318 2.521

( 0.000) ( 0.010) ( 0.002) ( 0.092) ( 0.011) ( 0.007) ( 0.014) ( 0.022)

IMA(1,1) forecast performance: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. et,x refer to the

forecast errors for the two predictions. E(et,x) is the mean prediction error, or bias. ACF(et,x) is the autocorrelation of

the forecast errors. RMSE(x) is the root mean squared prediction error on the given target x. σπ and σz are again the

standard deviations for [πt, zt]. All numbers in parenthesis are the standard deviations from the cross section of runs.
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Table 12: Policy and stability: Dual model learning, IMA start

ϕπ ϕz explode integrated E-stable ACF(π) ACF(∆π) ḡ(π) ACF(z) ḡ(z) σπ σz

1.000 0.000 0.000 1.000 0.000 0.994 -0.121 0.872 0.447 0.445 3.292 4.054

1.250 0.000 0.000 0.520 0.006 0.941 -0.137 0.865 0.418 0.419 1.148 3.876

1.500 0.000 0.000 0.160 0.012 0.813 -0.171 0.798 0.394 0.394 0.638 3.693

1.750 0.000 0.000 0.000 0.018 0.697 -0.196 0.731 0.382 0.380 0.453 3.572

2.000 0.000 0.000 0.000 0.024 0.639 -0.215 0.671 0.377 0.373 0.406 3.455

2.500 0.000 0.000 0.000 0.036 0.566 -0.241 0.588 0.369 0.363 0.355 3.248

3.000 0.000 0.000 0.000 0.048 0.519 -0.255 0.540 0.361 0.354 0.323 3.077

3.500 0.000 0.000 0.000 0.060 0.499 -0.264 0.513 0.357 0.351 0.301 2.902

4.000 0.000 0.000 0.000 0.072 0.482 -0.273 0.496 0.348 0.343 0.285 2.772

1.000 0.050 0.000 1.000 0.001 0.992 -0.166 0.817 0.417 0.419 2.371 3.124

1.250 0.050 0.000 1.000 0.006 0.971 -0.185 0.792 0.399 0.399 1.150 3.028

1.500 0.050 0.000 0.840 0.013 0.927 -0.193 0.777 0.391 0.389 0.791 2.943

1.750 0.050 0.000 0.640 0.018 0.888 -0.213 0.745 0.378 0.377 0.637 2.868

2.000 0.050 0.000 0.280 0.025 0.771 -0.218 0.710 0.367 0.366 0.451 2.782

2.500 0.050 0.000 0.000 0.036 0.586 -0.240 0.614 0.358 0.353 0.296 2.627

3.000 0.050 0.000 0.000 0.049 0.526 -0.255 0.557 0.354 0.350 0.266 2.514

3.500 0.050 0.000 0.000 0.060 0.505 -0.263 0.525 0.354 0.346 0.251 2.409

4.000 0.050 0.000 0.000 0.072 0.484 -0.272 0.501 0.347 0.341 0.237 2.306

Policy and stability: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. “explode” reports the fraction

of runs exploding in an unstable fashion. “integrated” reports the fraction of runs where agents perceive the series as

following the integrated process. “E-stable” is the learning stability condition. The ACF columns report the first order

autocorrelation for π (level and first difference) and z. The two values for ḡ are the weighted forecast parameters across

all agents for π and z. These are the fitted AR(1) values from the learning algorithm The final two columns present the

standard deviations for [πt, zt].
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Table 13: Stability check: Dual model learning

ϕπ ϕz E-stable explode

0.500 0.000 -0.012 1.000

0.600 0.000 -0.010 1.000

0.700 0.000 -0.007 0.920

0.800 0.000 -0.005 0.960

0.900 0.000 -0.002 0.000

1.000 0.000 0.000 0.000

1.100 0.000 0.002 0.000

1.200 0.000 0.005 0.000

1.300 0.000 0.007 0.000

1.400 0.000 0.010 0.000

1.500 0.000 0.012 0.000

0.500 0.050 -0.011 0.560

0.600 0.050 -0.009 0.000

0.700 0.050 -0.007 0.000

0.800 0.050 -0.004 0.000

0.900 0.050 -0.002 0.000

1.000 0.050 0.001 0.000

1.100 0.050 0.003 0.000

1.200 0.050 0.005 0.000

1.300 0.050 0.008 0.000

1.400 0.050 0.010 0.000

1.500 0.050 0.013 0.000

Policy and stability: Parameters ϕπ and ϕt are the policy terms from the interest rate rule. “E-stable” is the learning

stability condition. “explode” reports the fraction of runs exploding in an unstable fashion.
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Table 14: Stability check: Dual model learning, IMA start

ϕπ ϕz E-stable explode

0.500 0.000 -0.012 1.000

0.600 0.000 -0.010 1.000

0.700 0.000 -0.007 1.000

0.800 0.000 -0.005 1.000

0.900 0.000 -0.002 1.000

1.000 0.000 0.000 0.000

1.100 0.000 0.002 0.000

1.200 0.000 0.005 0.000

1.300 0.000 0.007 0.000

1.400 0.000 0.010 0.000

1.500 0.000 0.012 0.000

0.500 0.050 -0.011 1.000

0.600 0.050 -0.009 1.000

0.700 0.050 -0.007 1.000

0.800 0.050 -0.004 1.000

0.900 0.050 -0.002 1.000

1.000 0.050 0.001 0.000

1.100 0.050 0.003 0.000

1.200 0.050 0.005 0.000

1.300 0.050 0.008 0.000

1.400 0.050 0.010 0.000

1.500 0.050 0.013 0.000

Stability check: Dual model learning, IMA start Parameters ϕπ and ϕt are the policy terms from the interest rate rule.

“E-stable” is the learning stability condition “explode” reports the fraction of runs exploding in an unstable fashion.
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Table 15: Increasing model noise: Dual model learning, IMA start

ϕπ ϕz noise explode integrated ACF(π) ACF(∆π) ḡ(π) ACF(z) ḡ(z) σπ σ(E∗(π))/σπ

1.000 0.050 0.000 0.000 1.000 0.993 -0.171 0.814 0.416 0.417 2.493 0.015

1.000 0.050 0.025 0.000 1.000 0.985 -0.198 0.735 0.419 0.418 1.678 0.107

1.000 0.050 0.050 0.000 1.000 0.979 -0.201 0.720 0.424 0.425 1.381 0.139

1.000 0.050 0.075 0.000 1.000 0.970 -0.197 0.716 0.426 0.428 1.169 0.173

1.000 0.050 0.100 0.000 1.000 0.964 -0.189 0.719 0.438 0.441 1.057 0.189

1.000 0.050 0.150 0.000 1.000 0.953 -0.189 0.707 0.443 0.452 0.927 0.221

1.000 0.050 0.200 0.000 1.000 0.941 -0.185 0.702 0.452 0.466 0.826 0.240

Increasing model noise: Dual model learning, IMA start: Parameters ϕπ and ϕt are the policy terms from the interest

rate rule. “noise” is the noise level added to the fitness objective as a fraction of the mean(MSE). “explode” reports

the fraction of runs exploding in an unstable fashion. “integrated” reports the fraction of runs where agents perceive

the series as following the integrated process. The ACF columns report the first order autocorrelation for π (level and

first difference) and z. The two values for ḡ are the weighted forecast parameters across all agents for π and z. These

are the fitted AR(1) values from the learning algorithm The column labeled σ(E∗(π))/σπ measures the cross sectional

standard deviation in inflation forecasts divided by the time standard deviation of realized inflation, πt.
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Figure 1: U.S. Inflation and Output Gap
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Figure 2: U.S. Inflation and Output Gap: Autocorrelations
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Figure 3: Inflation model forecast error autocorrelations
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Figure 4: Output model forecast error autocorrelations
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Figure 5: Professional forecast error autocorrelations

2 4 6 8 10
Lag

0.1

0.0

0.1

0.2

0.3

0.4
Au

to
co

rre
la

tio
n

CPI
Trim CPI

51



Figure 6: Model time series: AR predictors
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Figure 7: Inflation and output autocorrelations: AR predictors
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Figure 8: Model time series: IMA predictors
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Figure 9: Inflation and output autocorrelations: IMA predictors
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Figure 10: Forecast mean squared error
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Figure 11: Forecast mean squared error: IMA start
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Figure 12: Forecast weight cross section: IMA/AR predictors
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Figure 13: Forecast parameter time series: IMA/AR predictors
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Figure 14: Forecast dispersion

0 2500 5000 7500 10000 12500 15000 17500 20000
Period (qtrs)

0.00

0.05

0.10

0.15

0.20

0.25

Fo
re

ca
st

 S
td

.

Noise
No noise

60



Figure 15: Forecast weight cross section with added noise
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