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Abstract

This paper describes a simple agent-based model for disease spread and epidemic dynamics. The

model is stylized and simple, yet tries to capture some of the core features that are understood to be part

of the COVID-19 progression. The model is strongly spatial, but is built in a basic featureless environment

to allow for spatial-temporal patterns to emerge endogenously. A key driving force of many of the results

is the presence of asymptomatic agents who are contagious and spreading the disease more freely than

symptomatic types due to differing levels of mobility. Simulations over several sets of parameters dis-

play richer, more realistic dynamics than standard benchmark (SIR) models which can be replicated as a

special case. Many of the results show dramatic differences between the fully spatial, and SIR type mech-

anisms. Finally, the model is used to explore key policy interventions including movement restrictions,

testing/contact tracing, and vaccination.
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1 Introduction

The COVID-19 global pandemic has driven an explosion in academic research. This event, which at the

time of this writing is only one year old, has caused an outpouring of research from many different fields.

There are probably many good reasons for this explosion in research activity, including most importantly,

the seriousness of the problem, but also the current availability of data, and increased compute power.

This paper presents another model looking at epidemic dynamics in general with a slight lean to COVID-

19 related parameters. It is closest in spirit to the original SIR model in trying to represent a platform to

visualize a highly stylized outbreak in a uniform spatial environment with relatively similar agents. It em-

phasizes several key aspects for disease spread in a world where space and agent motion is critical. First,

agents will go through a period where they are infected with the disease, but are unaware of this. This is

referred to as presymptomatic, and has been commonly referenced as a tricky aspect of COVID-19. Sec-

ond, the stylized spatial model leads to interesting endogenous patterns, or emergent features that impact

the spread of the disease. Outbreaks often take place at spatially distanced pockets, running their course

asynchronously. Furthermore, clumping of disease outbreaks in one local space can lead to a local pocket

of powerful herd immunity, stopping spread of the disease early in its progression.

Given the availability of massive and detailed data sets, why should we care about a stripped down

model that is not particularly fit to any data set? It should be taken first as a useful thought experiment,

or a way to get one’s head around the dynamics of a model which moves a notch up in realism from

the benchmark SIR framework. Another reason is that it gives some indication of which parameters are

important for disease spread. This can potentially inform empirical work in terms of where to look in our

sea of data, and which values should one work hard to precisely pin down. It also provides a model based

monte-carlo platform that can help in understanding methods for estimating key parameters. Finally, it

gives a picture of generic aspects in a spatial model. Nothing about it is specific to any real world spatial

geography. The benefit of this, is that it can give ideas as to which features of detailed models will travel

well when applied and fit to new localities. This is almost a kind of out of sample forecasting feature.

The model generates several features related to the goals just described. First, it can produce relatively

realistic time series for epidemic progression. Series where a disease can fade out rather slowly, and occa-

sionally reappear are common in the simulations. It also demonstrates an extreme sensitivity to the level of

asymptomatic/presymtomatic activity in the agent population. It displays several critical policy features,

some of which are expected, and some are surprising. The most surprising is that contact tracing proves
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somewhat ineffective in many cases. For almost all cases it is shown that the fully spatial model generates

very different results from the more SIR-like model where space is not a critical feature.

The landscape of infectious disease modeling is enormous. A review of this literature is a daunting

task. There are several key surveys and discussions of policy which have appeared recently.1 Modeling

tools seem to split into several relevant bins in terms of connections to this paper. Almost all models

trace back some historical roots to the original SIR model of Kermack & McKendrick (1927). Many models

used for policy analysis, and forecasting outbreaks, take this model as their core, but augment it in several

dimensions. They add many different compartments for the disease to describe individual progression

through the disease. Also, the SIR framework becomes a local core for a large scale networked model which

includes information on geography, transportation, and contact frequencies between local communities.

The approach used here is agent-based in the sense that it is trying to model individuals and not groups

or entire populations. An early example of this can be found in Burke, Epstein, Cummings, Parker, Cline,

Singa & Chakravarty (2006) which takes detailed data from a smallpox outbreak, and uses this to build out

a realistic small town setting. A recent example of this style of research as applied to COVID modeling is

Aleta et al. (2020) which brings modern large data sets to the problem. Agent motion is estimated from ge-

olocation data from a large scale (about 80,000 individuals) anonymized data collection system monitoring

locations and contacts.

The model presented here also touches on the large literature placing space and geography as the critical

part of disease spreading. An early example of this is Carpenter (1974). Another early example of an explicit

spatial approach modeled through transport networks is Bertuzzo, Casagrandi, Gatto, Rodriguez-Iturbe &

Rinaldo (2009). This paper also explores some simplified network structures for comparison. A very large

scale system handling space is the GLEaM system, Balcan, Goncalves, Hu, Ramasco, Colizza & Vespignani

(2010). Several recent papers have presented spatially explicit models for COVID-19 behavior. They include

Gatto, Bertuzzo, Mari, Miccoli, Carraro, Casagrandi & Rinaldo (2020), Munchi, Roy & Balasubramanian

(2020), and O’Sullivan, Gahegan, Exeter & Adams (2020). The latter is an explicit spatial model applied

to New Zealand, and uses a Netlogo framework linked to geographic data. An empirical critic of the

SEIR modeling framework is performed in Getz, Salter & Mgbara (2019) which shows how many empirical

results differ when one moves to smaller, and more homogeneous subregions in a country. Also, there have

1Economists might be most interested in Avery, Bossert, Clark, Ellison & Ellison (2020). Agent-based modelers will find the sum-
mary of these tools in Willem, Verelst, Bilcke, Hens & Beutels (2017). For a general survey of mathematical models of infectious
diseases there is Siettos & Russo (2013). Recent commentary specifically directed at COVID-19 modeling is given in Vespignani, Tian,
Dye, Lloyde-Smith, Eggo, Shrestha, Scarpino, Gutierrez, Kraimer, Wu, Leung & Leung (2020).
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been analytic approaches to rethinking standard infection models as in Vrugt, Bickmann & Wittkowski

(2020). An early model demonstrating the richness of dynamics which can occur in a theoretical spatial

environment is Lloyd & May (1996). Network connections are often a representation for distance in many

models. Several articles which are interested in network structure from a theoretical perspective are Lang,

Sterck, Kaiser & Miller (2018) and Wolfram (2020).

Asymptomatic spread is a big part of the model considered here. This is driven by growing evidence

that this is critical to the spread of COVID-19, (Gandhi, Yokoe & Havlir 2020). Some of the most detailed

evidence for this is from a skilled nursing facility, (Arons et al. 2020). The authors found that nearly half

of residents testing positive for the disease were asymptomatic.2 In He et al. (2020) the authors look at

viral shedding from throat swabs, and found that the maximum was at or near the onset of symptoms,

suggesting a large amount of presymptomatic infection.

Research coming from economists on COVID-19 has been extensive. Avery et al. (2020) give references,

and a road map to this work. Papers have concentrated on endogeneity and behavioral feedbacks leading

to changes in infection dynamics, agent heterogeneity, and political economy.3 All of these, except maybe

the last area are also part of the epidemiological literature.4 An important contribution of economists is to

try to understand macroeconomic shocks coming from the pandemic, and to build general models of the

economy that can measures the costs of the shocks and to guide policy makers for reopening strategies.5

This paper proceeds as follows. Section 2 gives details on the primary model used along with compar-

isons to more standard approaches. Section 3 presents all the model simulations and comparisons. Most of

the model output is viewed through a limited set of plot formats from a common monte-carlo comparison

across many different parameter sweeps. Section 4 will conclude and present ideas for the future usefulness

of this approach.

2Most did later become symptomatic.
3Another useful primer for economists is John Cochrane’s blog post at https://johnhcochrane.blogspot.com/2020/05/

an-sir-model-with-behavior.html. This gives a simple SIR model with behavioral feedback, and contains some recent references
to other work.

4For an agent-based approach to endogeneity of behavior see Epstein, Parker, Cummings & Hammond (2008).
5Several examples in this area are Acemoglu, Chernozhukov, Werning & Whinston (2020), Scherbina (2021), Bloom, Kuhm &

Prettner (2020), and Ludvigson, Ma & Ng (2020).
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2 Model structure

2.1 SIR models

Most models of epidemics get some of their foundations from the standard SIR model of Kermack & McK-

endrick (1927) shown in the following system of differential equations,

dS
dt

= −β(
I(t)
N

)S(t) (1)

dI
dt

= β(
I(t)
N

)S(t)− γI(t) (2)

R(t)
dt

= γI(t). (3)

It is built from a population which occupies three states, S (susceptible), I (infected), and R (recovered).

Agents move from S to I as S agents bump into I agents in the population. Their probability of hitting

an infected agent is given by the ratio I(t)/N which implies that all agents are uniformly moving around

through space, or the concept of space simply doesn’t exist. The other two equations build infected agent

changes from flow out of S less the flow into the recovered state. Finally recovered, which can be dead,

is the flow out of the infected state. Recovered agents are assumed to be immune. This model is nearly a

century old, but it forms the core both for model building and intuition in the world of infectious diseases.

2.2 Spatial model

The primary model considered here is a spatial model based on standard parts from SIR style models.

Agents move in a two dimensional cartesian space. For most periods, their behavior is to move one unit in

a random direction. Although model calibration is rough, it is assumed that each finite tick of the model is

equal to one day. Also, the space is assumed to wrap both from the end on the right, to the start on the left,

as well as top to bottom.

There are four states that agents can move through in the model. They begin as susceptible which means

they have not been exposed to the disease and might get infected. Their second state is presymtomatic (or

asymptomatic). In this state agents have been exposed to the disease, but are not showing any symptoms.

Presymtomatic agents follow the same motion rules as do susceptible agents since they are unaware they

are sick. Agents next move on to being infected, and in this state they show symptoms and decide to “stay

home”. For them motion stops in the spatial grid. The final state is recovered where they have passed the
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disease and are free to move again. They obtain permanent immunity at this point. One should always

keep in mind that some fraction of recovered agents will be dead, so the total deaths in any outbreak are

proportional to the recovered.

Agents infect others by landing on the same spot in space. Susceptibles are given the disease by both in-

fected and presymtomatic types with probability pin f ect. At the start of the run random numbers are drawn

for each person that determine the course of the disease. The length of infection is drawn from a uniform

distribution U[10,14] days which is a reasonable length for COVID-19 infections. Little is understood about

the asymptomatic features of the disease, but they do occur. This asymptomatic period is also crucial to

this study, so it will be allowed to vary over different runs. Each agent falls into the presymtomatic bin for

a total of U[0, Pmax] days. Setting Pmax = 0 eliminates asymptomatic behavior from the model, and making

it large allows for a lot of infection driven by agents in motion showing no symptoms.

Disease progression using only four boxes (SPIR) is very stylized relative to many other attempts at

COVID-19 modeling. For example, asymptomatic types can be modeled as never entering the infected

stage of the disease. Also, there can be a latent period in the presymtomatic stage, when agents are infected,

but not infectious. The basic idea is to keep the model as simple as possible, enhancing intuition, and

minimizing parameters.

The spatial model can be changed to mirror the SIR infection mechanism while maintaining its core

structure. This is done by changing agent movement from a unit spatial random walk to a complete random

location change. When an agent is asked to move it simply reappears at a random spot in the 2D space.

This will be referred to as a "diffuse" style of movement for agents. It is essentially replicating the core

assumption in the SIR where space does not matter, and only the various concentrations of different types

of agents contribute to infection probabilities.

Two other features will be important for agent motion. First, agents are allowed, with low probability,

to jump long distances. This is referred to as “long range travel”. This distance on each jump will be drawn

U[0,dmaxjump] units. The probability will be controlled by plong for the probability that a long (versus local)

trip is taken each period. As with short range travel, long range travel is not allowed when an agent is in

the infected state, but is allowed for all other states.
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2.3 Measuring epidemics

This model is capable of generating very different disease progressions even for the same set of parameters.

Many epidemics shut down after only a few days, while others go on for 100’s of days with extensive

infection through the population. This means it is important to look at cross sections of multiple simulations

requiring that runs be summarized with a small set of variables.

The first set of three variables are related to the severity of each run. “Recovered” estimates the mean

fraction of recovered agents. Assuming some fraction of recovered died, this number is the most basic

estimate of overall death from the disease. A second estimate is the maximum infection fraction. This is

the maximum population fraction of infected people during the course of the disease. It is not necessarily

related to total deaths, but it is an indicator of how stressed local health systems might become. One could

have a very long lived epidemic, which kills many people, but it would never have a very high infected

fraction, so hospitals would not become over extended. The final measure reported is an estimate of R0.

This value is the estimate of how many others each agent infects, and is a standard summary statistic

measured for many diseases. Each agent keeps a record of others infected, and this value is averaged over

a recent set of recovered agents. Other agent states are not used, since these are still in progress in terms

of infecting others. This is a dynamic value, and it moves toward 0 as the entire population is recovered.

The most reasonable estimate to compare with in the field empirical studies is probably the maximum R0

observed during any pandemic, and this will be reported.

The time series results of each epidemic spread are relatively complex, and difficult to summarize with

a single number. Two numbers give some basic features which try to distinguish between the spatial and

SIR types of models. The first is the length of the outbreak from start to the time step when the virus finally

dies out, tE. The second measure tries to capture asymmetry in the time dynamics of the virus. It reports

the following value,

tE − 2 ∗ argmax
t

I(t),

or the final time period less twice the time period when infections hit their maximum value. If the epidemic

were perfectly symmetric in terms of infections, then this value would be zero. If there is a long persistent

run down of the infection rate, then this value will be positive. The standard SIR model is not symmetric

itself, but it is often quite close to zero for this measure.
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2.4 Policy interventions

The computational experiments will use three policy interventions. They are all implemented in a stylized,

simplified fashion. The first tries to replicate restrictions on mobility and social interactions. The mobility

of all agents is uniformly restricted. Each time an agent is ready to move in space, it will draw a random

variable, and then only proceeds according to a given probability, Pmove. It is a kind of probabilistic stay at

home order. This slows the spread of the disease by restricting motion of susceptible and presymptomatic

agents, and also reduces the amount of contacts between all agents. It is a stand in for almost all motion

and interaction restricting policies. Long range travel is also restricted by this probability.

The second policy tool implements a testing and contact tracing program. All agents are subject to

testing with a given probability. Tests are assumed to be completely reliable with no false negatives or

false positives. Agents testing positive will be quarantined for 15 days. This shuts down the movements of

presymptomatic agents, and for most runs the quarantine period is longer then the presymtomatic period,

so they step right into the symptomatic phase of the disease which restricts movement too. All agents keep

track of a recent set of contacts. When “contact tracing” is activated, a positive test for an agent will also

quarantine the entire set of contacts for 15 days as well. In this way, the policy tries to replicate standard

testing/contact tracing as implemented in many areas.

The final policy intervention is concerned with vaccination. As with the other experiments this one is a

very simplified version designed to explore the impact of an already immune population. The simulation

starts in the same way the other runs do with a single infected individual, but some fraction of the popula-

tion is given immunity. In the model they are moved to the recovered state before the run even starts. This

would correspond to an outbreak started in a population with a given fraction already immune.

3 Computational experiments

The model is simulated using the Netlogo platform.6 Netlogo is well designed for simulations where space

and motion are critical. It also allows the creation of a rich user interface that allows for dynamic interac-

tions between experimenters and models.7 Each run of the model starts with a single infected individual

chosen at random. Figure 1 gives a view of what the actual model looks like with the panel for the entire

6Wilensky (1999) is the core software, and is available open source for all platforms, http://ccl.northwestern.edu/netlogo.
Wilensky & Rand (2015) is an excellent introduction to Netlogo and agent-based modeling.

7The model used here also gets much early inspiration from code in Brearcliff (2020). This netlogo implementation sets up some of
the basic dynamics of a spatial infection model using the SEIR variant of the SIR model (close to the SPIR framework used here), and
also puts some basic restrictions on how movement can proceed under a lockdown policy.
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space, various sliders and controls, and plots of key variables in real time as the model progresses.

Table 1 gives a summary for the key parameters of the model. Many of these are flexible, and can be

changed by the user, but they are held fixed in most of the simulations. The model will be simulated across

several parameter sweeps to experiment with their impact. The Netlogo “Behavior space” system is used

for this. Runs will report the 5 different summary statistics previously described, and the mean over 25

runs is reported in the figures.

Figure 2 gives an initial picture of the dynamics of the spatial model. Time series are presented for

an single run. The presymtomatic range is U[0,10] days which will be standard for many of the future

runs. Long range travel probability is set to zero. The upper panel displays the progression of the disease

through the two critical states of presymptomatic and infected. The disease shows many features common

to pandemic time series, but which are difficult to quantify. There is a well defined peak in infections about

about 100 days, but it also displays several other local maximums. This is not quite perfect cyclical behavior,

but also not a perfect single peaked progression. Also, the time series displays a long right tail in that the

disease takes a while to finally get shutdown.

The lower panel shows the estimates of R0 as the model moves through time. Its maximum occurs early

in the progression at near 2.5.8 It then quickly falls to near 1, and will move back and forth around this

level for the remainder of the run. It should be noted that the small infection peaks often correspond to

local moves of R0 above zero, while the troughs correspond to periods when R0 falls below zero. Several of

our later summary statistics can be seen in this single plot. The maximum infection rate is about 0.04. The

total length of the epidemic is about 500 days. The asymmetry would be approximately 500− 2 ∗ 100 = 300

days. (100 is the approximate time of the maximum infection.) Finally, R0 maximum would be 2.5.9

The second primary comparison model is the diffuse model where agents move randomly (as opposed

to locally) in space. Figure 3 repeats the previous plots for this model. The dynamics are clearly very

different. They now appear much closer to a classic SIR model. The infection and presymtomatic series

are strongly single peaked, and are close to symmetric in time. The maximum infection fraction is large at

0.4, and the disease dies out quickly a little after day 100. Interestingly, the maximum R0 level is similar

to the previous run with a value near 2.5, but in this case the model maintains a steady value for a long

period of time which is also consistent with SIR theory. The estimated asymmetry value would be about

8There have been many attempts to estimate R0 for COVID-19. This value falls within the wide range that is currently considered
reasonable.

9An interesting related simulation example is contained in Charbonneau (2017) which also simulates infections moving through
a simple spatial grid. These also generate a relative rich time series showing near erratic behavior with many local maximums and
minimums.
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120 − 2 ∗ 65 = −10, or relatively close to zero in comparison to the spatial model. There is no evidence for

a long right tail in the time progression. This two model time series contrast couldn’t be more stark. It will

now echo through most of the following simulations.

3.1 Baseline and asymptomatic spread

The first set of simulations vary the amount of time agents are presymtomatic. In this state they are infected,

and are also contagious. Because they are not yet showing any symptoms they move around freely and

infect others. This is in contrast to the infected (symptomatic) state when they are still contagious, but stop

all movement (ie. stay home).

The presymptomatic length is chosen randomly for each agent and varies over a range of [0, amax] days.

Figure 4 shows the three measures representing the severity of the epidemic. It reports outcomes for both

the fully spatial model which are labeled “Spatial”. It also reports the benchmark comparison, SIR like

model which is labeled “Diffuse”. As previously described, motion in this model is not local. Agents

diffuse across space in a completely random fashion. This aligns with the perfect mixing assumptions that

go along with a baseline SIR model with a single spatial compartment. The contrast between these two

models will be crucial.

The top panel of figure 4 shows the recovered fraction for different amounts of presymptomatic behav-

ior. The first thing to notice is that for this model structure and parameters, presymptomatic behavior is

necessary for the epidemic to start. Recovered represents the agents who have had the disease and are

recovered, so when this value is low, or zero, it indicates that the extent of infection was small. Also, it is

important to remember that some fraction of recovered will be dead, so this is also related to the total deaths

caused by the disease. For both the spatial and diffuse models this value is increasing in the presymtomatic

level, but the diffuse model increases much more quickly. Even with only a maximum presymptomatic

period of 5 days it already shows an infection fraction of near 75 percent.

The greater spread and severity of the diffuse model also appears in the second panel which reports

the maximum infected fraction. This is the maximum fraction of the population in the infected state as the

disease progresses. The uniform mixing in the diffuse, SIR type model spreads the disease quickly through

the entire population, so things get very bad, very fast. The fully spatial model requires the disease to be

spread by the relatively slow motion of the agents, making most of the pockets of infection local. Both

increase with the presymtomatic levels, but they are never very close.
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The final measure looks at the maximum R0 estimate from the runs. This is a rolling estimate of the

average number of people infected by each recovered person. The value is the average over 25 runs of

the maximum reported for each run. It is increasing over the range, and also shows a higher value for the

diffuse case. It is interesting that the actual numerical value for the spatial model is near 2 which is often

quoted as a reasonable estimate for COVID-19.

Figure 5 reports the time series features across the same set of simulations. These attempt to summarize

the time trajectory of the full epidemic in two numbers. The first panel shows the actual length of time the

disease is present in days. Consistent with the previous figures the Diffuse experiments are much shorter

in length. The disease moves quickly through the population, and robs itself of susceptible types in a very

short time. The fully spatial outbreaks can last much longer with a maximum of a little over 500 days. Both

plots show a nonmonotonic relationship. In the first phase, increasing the presymptomatic level increases

the fraction of bad outbreaks of the disease, leading to increases in the time length. However, further

increases lead to more intensity in the epidemic with a quicker spread, and shorter time frames.

The lower panel displays the asymmetry in the epidemic dynamics. It measures the difference between

the start (t = 0) to the maximum infected time period and the finish to the maximum infected period. A dis-

ease run with a large “right tail”, or very persistent and slow decay, would generate a positive asymmetry

measure. The figure shows that the diffuse model is very symmetric with regular increases and decreases in

infections. The results are different for the spatial model. For many runs the disease fades out very slowly

off its peak, generating large positive values. The results for the spatial model are again nonmonotonic

with a maximum of 200 near amax = 8. The reason for this probably parallels that for duration. Initially,

epidemics are getting more intense and causing a longer time to run out, but as this intensity increases the

asymmetry falls along with the duration.

Figure 6 further pushes the comparisons with an SIR benchmark. In this case the diffuse case is com-

pared with a “Full SIR” model. This model is still operated in space, but agents continue to move ran-

domly. However, this model drops the distinction of motion between symptomatic and presymptomatic

types. Symptomatic agents are now also allowed to move freely through space, and are not distinct from

presymptomatic types. In this sense it is now very close to a traditional SIR model in space and time. The

first two panels in figure 6 display comparisons between the two models. The fraction of presymptomatic

types still can have some impact on the Full SIR model since this value does impact the total days in which

an agent is infectious. However, the graph shows little impact of this with a severe outbreak showing up

for all values of amax. For lower levels of amax there is a large difference between the two models which is
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sensible since with the diffuse case most infected agents are locked down (but still infectious). Panel two

shows a similar pattern for the severity in the two models.

The lower panel in figure 6 displays the estimated maximum R0 for the two models. The plot also shows

the theoretical value from the SIR model. In a traditional SIR model R0 is given by,

R0 =
β

λ
(4)

which approximates the others an agent will infect over the average length of their infected period. For the

discrete version of the model this equation is approximated in several ways. λ will be 1/(0.5 ∗ amax + 12)

where the two items in the denominator are the expected length of the presymptomatic and symptomatic

periods respectively. β is the expected number of interactions on each day. This is estimated by

β ≈
∞

∑
i=0

Pr(N = i)i (5)

where Pr(N = i) is the probability of i agents sitting on a given patch. It can be determined easily from

a binomial distribution. The above sum is only taken out to i = 10 since it this probability drops to zero

quickly. The plot shows a pretty good agreement between the theoretical level and the estimated benchmark

for amax up to 12. Both are well above the diffuse case with values in the range of 3 to 4. Beyond amax = 12 the

values start to diverge. It is not clear exactly why this is happening, but one possibility is that this simulation

points out some of the difficulties in estimating R0. As the infection moves through the population more

quickly, then the period in which R0 is not impacted by the drop off in susceptibles becomes very short,

and the estimated value becomes biased down as falling S starts driving the result. Figure 6 connects the

simulation model more firmly to the theoretical structure of the SIR model. It also shows that even for

the diffuse case, which is taken as a kind of representation for an SIR like model, the marginal impact of

shutting down motion on infected types can be very large.

These initial experiments are used to set some baseline parameters for future runs. In particular, the

amax value will often be set to 10 days. Given the uniform distribution of this value between 0 and amax

this yields a mean presymptomatic period of 5 days which seems within a reasonable range for what has

been discussed for COVID-19. It yields a fairly extensive average epidemic in the spatial case where about

50 percent of the population will eventually be infected and recovered. That fraction is closer to 90 percent

for the diffuse case.
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3.2 Long range travel

The next figures explore another key structural parameter in the model. This is the probability of agents

moving longer than one step in space, or “long range travel”. This can also be thought of as representing air

travel, since agents will simply reappear at the new space without touching anyone in between. Instead of

randomly moving 1 unit, they now move randomly [0,dmaxjump] with a given probability. The probability of

jumping will be swept in the next set of figures, but the dmaxjump will be fixed at 25.10 The presymptomatic

maximum, amax, will be set to 5. This is done since this is a region where in the spatial model outbreaks are

very small. It will be interesting to see if long range travel can change this situation.

Figure 7 presents the results for increasing probabilities of long range travel for the spatial and diffuse

models holding other parameters fixed. It repeats the presentation of the severity summary statistics: re-

covered, max infected, and R0. The upper panel shows a steady increase in the severity of the epidemic

as long range travel is increased for the spatial model. More motion leads to more spreading as should be

expected. In the diffuse/SIR model there is no change, since this model is already scrambling agents ran-

domly across space. Also, for large amounts of travel the models appear indistinguishable. Similar patterns

appear in the next two panels for max infected, and R0, respectively. The severity of the disease outbreaks

increases in the spatial model and it steadily approaches the values for the diffuse case.

Figure 8 repeats the experiments for the two time series measures. Results are similar to the previous

figure. Duration and asymmetry of outbreaks falls for the spatial model as the long range travel probability

increases. It steadily converges to the diffuse model, indicating that frequent long range travel means the

SIR framework would provide a reasonable approximation to what is going on.

The results presented in figures 7 and 8 are close to what should be expected. The amount of agent spa-

tial mixing increases as long range travel increases. Are there any more subtle messages in these figures?

One is that for compartmentalized SRI models, as long as it is reasonable that agents travel freely at dis-

tances on the order of magnitude of the compartment, then these models can give reasonable predictions.

A second, more speculative result comes from the fact that the increase in recovered fractions increases

very quickly for the spatial model. For only 5 percent long range travel probability, the overall recovered

fraction moves to near 50 percent, equivalent to runs with amax = 10 without travel. Since long range travel

can be part of the overall policy tool kit, this suggests that trying hard to eliminate this travel has been a

reasonable thing to do.

10The spatial grid is 101 square, so a jump of 25 is significant.
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3.3 Motion restrictions

The previous experiments could be thought of as explorations of deep structural parameters of both the

disease progression, and agent motion behavior. The remaining experiments are directly connected to

policy tools. They explore agent movement, testing, and vaccination policies.

Most policies aimed at slowing the spread of disease are directed at slowing interactions, and infections.

In the following experiments agents are slowed down by limiting their movements probabilistically. Instead

of moving every day they only move with a given probability less than 1. This can be thought of as a kind

of smooth lockdown. Setting the probability to 1 repeats the dynamics of the original model, and setting it

to zero gives a model with no motion.

Figure 9 repeats the three severity measures as movement is gradually restricted. In all cases the maxi-

mum presymtomatic period amax is fixed at 10, and the long range travel probability is set to 0. This is done

to compare with previous results, and to draw the starkest differences between the two types of models.

In all cases movement restrictions reduce the outbreak severity. Differences between the spatial and dif-

fuse/SIR models are again apparent. Obviously, the levels of severity are smaller for the spatial model in

all cases. Most interesting is the fact that reductions in relative severity are greatest in the spatial model.

For a modest reduction in movement to 0.8 the recovered level drops by nearly 50 percent which would

translate into a fatality reduction of similar magnitude. The proportionate reduction for the diffuse model

is around 10 percent. To gain a 50 percent reduction for that model one would need the movement probabil-

ity to fall to 0.5. Similar results are seen for the Max infected levels. However, Max R0 for the two models

tracks very closely. These results ask the interesting question of whether the payoffs to small reductions

in activity could be underestimated in a SIR-like framework. The fundamental importance of space and

distance in the spatial model must be critical for this result.

In figure 10 the impact of movement restrictions on time series features are presented. The results show

that for the spatial model there is an actual increase in the length of the epidemic for small reductions

in probability, but quickly the Duration starts to fall as more restrictive movement restrictions are put in

place. A similar pattern is observed for the Diffuse/SIR model, but the maximum length is now pushed

over to much smaller probabilities and larger movement restrictions. It is also interesting to note that over

a large range of movement probabilities the two types of models generate opposite changes in Duration.

Increasing restrictions (lowering probabilities) reduces the duration for the spatial model, and increases the

duration for the diffuse model. Although somewhat counter intuitive, the results in the diffuse case are
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probably the result of smaller infections leading to relatively long, but small, epidemics in space and time.

The lower panel of figure 10 shows no evidence for much asymmetry in the Diffuse/SIR model. The

Spatial model is very different displaying its usual asymmetry for movement probabilities near one. Some-

what surprisingly, these drop very quickly as the probability falls to near 0.6. This may indicate that long

right tails which are caused by new pockets of the disease starting up in space cannot take hold since agents

are not moving enough.

3.4 Testing and contact tracing

The first set of simulations showed the importance of the presymptomatic period for the spread of the

disease. Infectious agents moving around as they would in their normal lives are critical in the dynamics

for the given parameters. In real epidemics, and in particular COVID-19, this suggests the crucial role that

testing can play. This section explores the dual policies of testing and contact tracing. They are done in

a highly stylized fashion. First, agents can now be tested with a given probability. Testing is completely

accurate (no errors), and agents are assumed to follow quarantine instructions. A positive test will lock

them down for a fixed length of 15 days, which will take them well into the infectious (symptomatic) phase

when they lock down anyway. This is a policy to find and stop motion of anyone who could spread the

disease. As previously described, contact tracing will also be combined with testing. Recent agent contacts,

Ncontact = 10, will also be quarantined on discovery of a positive test result.

Figure 11 presents results for the spatial model only. First, it is clear that testing is an effective means of

shutting down the disease. With 100 percent daily testing there is no outbreak. This makes sense since in the

overall picture of the model this would be nearly equivalent to shutting down the presymptomatic period.

All movement ceases once an agent is infected and infectious. Quantitatively the model does require a lot

of testing. Reducing test levels to 0.2, or about once every 5 days, moves the recovered fraction back to 0.25

which is a fairly large outbreak.

The most dramatic result in figure 11 is that contact tracing appears to have such a small impact. For all

the measures there is a small level of improvement, but for most test probabilities the improvement is small.

For example, at a test probability of 0.2 contact tracing reduces the recovered level from 0.25 to 0.20. Not

a very dramatic improvement, especially when compared to the big change one would get by increasing

testing probability to 0.5. This is a very interesting result, since in the real world policy context contact

tracing is viewed to be a key tool. The lower panel shows a reduction in R0 as testing increases, and in this
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figure contact tracing appears to have almost zero impact.

The time series features are again explored in figure 12. The duration of the disease and its right tail

asymmetry all fall as testing is increased. Major reductions in the length of the epidemic require a fairly

extensive testing protocol with a test probability greater than 0.5. Once again there is no impact from the

addition of contact tracing.

Figures 11 and 12 only displayed features for the pure spatial model. The diffuse model will now be

shown in figures 13 and 14. Figure 13 shows that the severity is again decreasing in the amount of testing.

As with the previous figures there is some indication that testing must be done very frequently to have a

big impact. Even at a testing level of every other day (0.5) the outbreak is still pretty extensive with well

over half the population infected (recovered) in the absence of contact tracing. In contrast to the findings

from the pure spatial model, contact tracing now shows an impact. It reduces both total recovered and

max infected levels significantly for a range of test probabilities. This is especially true for the Max infected

values, less so for the total recovered part of the disease. Finally, there is only a small impact of contact

tracing on estimated R0.

The time series results are reported in figure 14. Again, the important result is that contact tracing

now shows a large impact on the dynamic progression of the disease. Contact tracing leads to longer

durations (except for very large testing levels), and an interesting asymmetry which is generally not seen

in the diffuse model cases. It is important to remember that contact tracing is reducing the overall severity

of the outbreaks, but they appear to fade away more slowly. It also should be noted that increasing testing

increases the duration of the epidemic for a range of testing probabilities (< 0.4). This is exactly the reverse

of the result for the pure spatial model seen in figure 12.

3.5 Vaccination

The final policy explored is vaccinations. Vaccination will be modeled by making some initial fraction

of the population recovered. This part of the population is then not sick and cannot carry the disease or

infect anyone else. The fraction of the population that is susceptible at the start is smaller since it is just

(1-vaccinated).

Figure 15 presents the impact of increasing vaccinations on the severity of the outbreak. For both the

spatial and diffuse models vaccinations work to wipe out the epidemic. To better assess the severity of

the disease, the fraction recovered is normalized by the fraction initially not vaccinated. In other words
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recovered is now measured as,
fR − fV
1 − fV

. (6)

This measures the fraction who moved to recovered from susceptible (were not vaccinated), normalized

by the original susceptible fraction. It is just looking at numbers for the unvaccinated as a separate pop-

ulation from the rest. Also, the maximum infected fraction is also normalized by the initial unvaccinated

population,
max I
1 − fV

. (7)

For both cases a vaccination rate of a little over 0.6 (60 percent) pretty much eliminates spread of the disease.

There are again major differences between the two models. The spatial model sees stronger reductions in

infection for much smaller vaccination levels. For example, at only a 40 percent vaccination rate the spatial

model shows a near elimination of the epidemic. For all cases the value of maximum estimated R0 steadily

drives toward zero as the level of vaccination increases. For this case, the two models generate relatively

similar numbers.

Figure 16 looks at the time series properties as the vaccine levels are changed. For the spatial model there

is a strong reduction in duration, and both models converge to a very short time period corresponding to

near elimination of the disease. This is repeated in the lower panel for asymmetry. Vaccination levels have

no impact on asymmetry for the diffuse case.

4 Conclusions

This paper presented a stylized model of infectious disease spread. Its simple structure puts it much closer

to the SIR model in spirit, and it should be viewed more as a computational thought experiment than a

quantitative model for predicting disease spread, or making detailed policy recommendations. There are

still several interesting aspects to the entire exercise which will be interesting to eventually see how well

they hold up empirically as more data is gathered.

First, the spatial model is able to generate much richer time series than a model which mostly ignores the

spatial dimension. Time series can generate near cyclic behavior and long persistent tails. It is important

that these features may be a deep aspect of how the disease evolves through space, and not necessarily

related to policy feedback dynamics which are often conjectured. The second key result is the powerful

impact of asymptomatic spreading. This is already starting to get acknowledged by much of the COVID-
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19 research, but it is important to see it here. To researchers it is a reminder that to fully understand the

nature of this disease we need to work hard to lock down the parameters for asymptomatic periods where

individuals are infectious and moving through space.

Several policies are explored, and must be viewed with some care since they are not aligned with actual

data. Restricting movements and contacts behaves as it should, but the impact is stronger for the fully

spatial model. Given the abstract nature of this policy, it may be the most difficult to take to the real world.

Testing also is a powerful tool for slowing down or eradicating the disease. However, the results suggest

some possible caution for testing frequencies on the order of once per week. This may not be enough.

Probably one of the most interesting results on testing is related to contact tracing. For the fully spatial

model its impact was marginal. At the moment it is not clear why this is true, or how its implementation

can be improved. For the fully diffuse model contact tracing behaves in a manor more consistent with

the common finding that it is very important. Finally, vaccinations behave as they should in eliminating

the disease, but the two models again give a different picture. In a fully spatial framework the threshold

necessary for a successful vaccination can be as low as 40 percent, where the equivalent for the diffuse

model is closer to 60 to 70 percent. This is a pretty optimistic result in terms of vaccination programs.

It is very tempting to make this model more complex and to get it closer to data calibration. In many as-

pects this should be avoided since it might quickly lose its easy interpretation, and usefulness as a thought

experiment. However, there are probably several parts which could be improved. As more detailed infor-

mation on disease progression becomes available the length of time spent in presymptomatic and symp-

tomatic stages should be updated. This will be an easy change. A second important improvement would

be to make movement in space more realistic. This would probably not involve layering an exact geometry

on this system, but it it should be possible to better align with some generic information on how people are

moving around. These data sets are steadily becoming more readily available through cell phone informa-

tion. A final major limitation of the model in relation to most other models is the uniformity of contacts.

This is where more serious models bring known contact network structure in to better simulate probabil-

ities and interactions. It is not clear if the lack of this structure is a curse or a blessing. To maintain the

thought experiment side of this model, and the endogenous nature of space, network structure would need

to be brought on board in a very simple fashion.

This paper has presented an agent-based computational model for infectious disease spread. It is highly

stylized, and relatively simple, yet still captures enough elements of realism to interest policy makers. It

has shown the key importance of combining agent mobility in a rich, but simple space, along with asymp-
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tomatic infections. All three parts are important contributors to the dynamics of the disease and its response

to policy tools.
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Table 1: Parameter values

Parameter Value
amax (asymptomatic) Often 10, range = U[0, amax]
dmaxjump 25
pin f ect 1
Infection range (days) U[10,14]
R0 sample size 100
Ncontact Contact list (agents) 10
Grid 101 square with wrapping

Basic model parameters, and common settings.
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Figure 1: Netlogo interface
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Figure 2: Single run: Spatial model
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Figure 3: Single run: Diffuse model
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Figure 4: Presymptomatic length: Severity
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Figure 5: Presymptomatic length: Shape
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Figure 6: Full SIR model comparison
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Figure 7: Long range travel probability: Severity
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Figure 8: Long range travel probability: Shape
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Figure 9: Movement probability: Severity
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Figure 10: Movement probability: Shape
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Figure 11: Testing probability (spatial model): Severity
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Figure 12: Testing probability (spatial model): Shape
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Figure 13: Testing probability (diffuse model): Severity
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Figure 14: Testing probability (diffuse model): Shape
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Figure 15: Vaccinations : Severity
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Figure 16: Vaccinations: Shape
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