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Abstract

This paper explores a common machine learning tool, the kernel ridge regression, as applied to finan-

cial volatility forecasting. It is shown that kernel ridge provides reliable forecast improvements to both

a linear specification, and a fitted nonlinear specification which represent well known empirical features

from volatility modeling. Therefore, the kernel ridge specification is still finding some nonlinear improve-

ments that are not part of the usual volatility modeling toolkit. Various diagnostics show it to be a reliable

and useful tool. Finally, the results are applied in several dynamic trading strategies to judge the value

added over the current forecasting methods.
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1 Introduction

Machine learning (ML) tools have been dramatically changing the world of data analytics. They have been

applied in almost all fields with enough data to make improved predictive modeling a possibility. Even

though the basic ML toolbox has been around for over 50 years, modern computing, data availability, and

improved algorithms have invigorated this area of research. Finance is obviously a major area for appli-

cation of these tools.1 It is obvious why primary interest is directed at forecasting returns and developing

trading strategies. Economic gains in this area have the potential to be quite large. However, they run

up against efficient market limits that imply predictability of market returns should be difficult if not im-

possible. This makes this modeling space difficult, and more importantly, difficult to perform clear model

comparisons in a world where the signal to noise ratio is very low. This paper turns to modeling volatility,

where predictability is higher, and selecting good predictive models may have a larger impact.2

The conditional variance of returns, or volatility, is very predictable. This feature has been known

for a long time, and has led to the development of many useful models and procedures.3 Early work

concentrated on squared and absolute daily returns. In the early 1990’s a revolution occurred with the

use of high frequency data to estimate variances over a given day using intraday data. Known as realized

volatility, it provided more accurate measures of volatility and its dynamics.4

The purpose of this paper is to develop and explore predictive models for daily realized volatility time

series using a kernel ridge regression. This machine learning tool is capable of capturing a rich set of non-

linear features in the data. There are many methods in the standard machine learning tool set including,

nearest neighbors, support vectors, ridge and lasso regressions, regression trees, and random forests. There

are also deep neural networks which form much of the basis for modern image classification. A full com-

parison of all these tools is beyond the scope of this paper. Also, which tool is well suited for time series

analysis is still an open question. Analysis here will concentrate on the kernel ridge regression. Recently,

kernel ridge has been applied in macro forecasting in Exterkate, Groenen, Heij & van Dijk (2016). It looks

like a promising tool for exploring a large rich set of nonlinear features while avoiding model over fitting.

1ML research in finance is not new. In the 1990’s there was an earlier wave of interest. Several early examples include Diebold
& Nason (1990), LeBaron (1992), Meese & Rose (1990), and Mizrach (1992). LeBaron (1998) brings together many tools considered
important today. These include neural networks, evolutionary learning, and boostrap/cross-validation systems in the search for
improved foreign exchange trading strategies.

2Examples of machine learning tools for volatility prediction are Andrada-Felix, Fernandez-Rodriguez & Fuertes (2016), Audrino
& Knaus (2016), Chen, Hardle & Jeong (2010), Luo, Zhang, Xu & Wang (2017), and Lux, Hardle & Lessmann (2018).

3See Andersen, Bollerslev, Christoffersen & Diebold (2006) for one of many surveys in this large area of research.
4This area is now very large, and is a standard for volatility modeling. See Barndorff-Nielsen & Shephard (2010) and Andersen,

Bollerslev, Christoffersen & Diebold (2013) for two of the many surveys available.
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It is closely related to support vector machine regressions, but these use a slightly nonstandard objective

function that makes comparisons to other time series results in econometrics more difficult. By utilizing a

flexible functional form, kernalized methods in machine learning can theoretically represent any possible

nonlinear relationship. This makes them a good approach in searching for possible volatility nonlinearities.

Volatility may be much more predictable than returns, but it provides its own set of challenges. First,

the known predictable features mean that the bar is now higher in terms of forecast comparisons. Just being

able to forecast volatility is not interesting. The question is whether a model is able to beat a well defined

benchmark. This opens the question of exactly what this benchmark should be. This paper searches through

some common examples from the recent financial time series literature. Second, volatility has some patterns

that suggest either formal long memory processes, or potential regime shifts that might make building

smaller parsimonious models difficult.

Section 2 will introduce the data and linear and nonlinear models that will be used. Section 3 estimates

the various models and measures the comparisons across the standard models along with the kernel ridge

target. Section 3.4 applies the forecasts to several dynamic trading strategies to measure the economic

significance of the results, and section 4 concludes.

2 Data and methodology

2.1 Data sources

This paper uses intraday data from the Dow Jones Industrial index provided by Tick Data. The series begins

on April 1, 1993, and continues through March 2019. The series is sampled at a 5 minute frequency within

the trading day only.5 This high frequency series is used to aggregate up to a daily series. The Dow is used

for several reasons. First, it is a common, well monitored, index, of relatively large stocks, and is available

on a long time series at the intraday frequency. Second, there are intraday series on the Dow that go back to

1933. In other research, LeBaron (2018), I have used the modern data and the older data to build very long

volatility time series. This paper concentrates on the modern data only.

Estimating daily realised volatility follows the standard procedure of summing the 5 minute squared

returns,

RV2
t =

H

∑
h=1

r2
t,h, (1)

5See Liu, Patton & Sheppard (2013) for evidence on why 5 minute returns are a good solution to many problems with high frequency
series.
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where rt,h are 5 minute log price differences. A key test will be implementing a volatility control strategy

which depends on estimates of the daily standard deviation. For most tests here, the sample standard

deviation, RVt =
√

RV2
t , will be used rather than the daily variance.

A second series used will be the realized quarticity defined by,

RQt =
H
3

H

∑
h

r4
t,h. (2)

This measure of within day fourth moments is used in Bollerslev, Patton & Quaedvlieg (2016) to augment

and improve traditional volatility forecasting models.

Finally, daily returns will be measured within the day using the open and close on the Dow. These

will be important for the trading strategies which consider only trade within the day, and ignore overnight

periods. Forecasting overnight volatility adds a extra element of forecasting complexity which will not be

considered here. Rt,oc represents daily arithmetic open to close returns on day t. Also, close to close returns

will be used as an input into volatility forecasts, and are given by Rt,cc which represents an estimate from

the close on day t− 1 through the close on day t. In both cases log returns are represented by rt,oc, and rt,cc

respectively. These are built into a daily series containing 6546 observations.

2.2 Predictive tools

Volatility is persistent, and predictable using many different models. For realized volatility standard linear

time series models have been shown to work well in forecasting near horizon future volatility. One model,

introduced in Corsi (2009), has proved particular useful, and is a standard for forecasting. Corsi’s approach

is to construct weekly and monthly volatility measures which will be used in forecasting. This done here

using the standard deviations of daily volatility.

RVt|t−m =
1
m

m−1

∑
j=0

RVt−j. (3)

for m = 5, and m = 22. Also, for returns a similar definition holds,

rt:t−m =
1
m

m−1

∑
j=0

rt−j,cc. (4)
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The standard model proposed in Corsi (2009) for volatility forecasting is then a modified autoregression

based on the composite time series,

RVt+1 = β0 + β1RVt + β2RVt|t−4 + β3RVt|t−21 + µt+1. (5)

This model has connections to LeBaron (2001) which demonstrates the usefulness of a three factor approach

to long memory correlation features in volatility time series.

It is also well known that returns themselves help to predict future volatility. Volatility is more likely to

rise in a falling market. This is known as the leverage effect.6 A symmetric augmentation of the previous

model yields,

RVt+1 = β0 + β1RVt + β2RVt|t−4 + β3RVt|t−21 + β4rt + β5rt|t−4 + β6rt|t−21 + µt+1. (6)

Recently, these linear forecasting rules have been modified using several nonlinear forms. Bollerslev

et al. (2016) propose the Realized Quarticity (RQ), and interact it with the coefficient on the first lag of

volatility,

RVt+1 = β0 + (β1 + β1QRQ1/2
t−1)RVt + β2RVt|t−4 + β3RVt|t−21 + β4rt + β5rt|t−4 + β6rt|t−21 + µt+1. (7)

The basic intuition for this is simple. As a fourth moment it is a proxy for the precision of the estimate

of the second moment. With a less precise estimate of RVt the coefficient should be reduced through β1Q.

This model often does not carry all these components. A much more parsimonious version will be used. A

second nonlinear structure is proposed in Wang & Yang (2017). Their functional form also attenuates the

first coefficient again according to,

RVt+1 = β0 +(β1 + β|r||rt|+ βrrt + βRQRQ1/2
t )RVt + β2RVt|t−4 + β3RVt|t−21 + β4rt + β5rt|t−4 + β6rt|t−21 +µt+1.

(8)

In this case returns and absolute returns are allowed to impact the persistence of volatility.

6This feature was discovered in Black (1976), and named in Christie (1982) as being related to the amount of leverage at various
firms. It has recently been reexamined in Hasanhodzic & Lo (2011). Glosten, Jagannathan & Runkle (1993) and Nelson (1991) are
useful models, and a more modern approach is in Curci & Corsi (2012).
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2.3 Kernel Ridge Regression

Kernel ridge regression is a function approximation system that can be applied in a regression context.

However, it is most often seen as part of a support vector system used for classification.7

This nonlinear regression utilizes two important tools from machine learning. First, a ridge regression

penalty allows the model to be fit in a potentially high dimensional nonlinear space while keeping over-

fitting problems under control. Second, a method known as the “kernel trick” makes the estimation and

forecasting problem computationally tractable.

First, the overfitting issues is addressed. Start with a traditional linear regression,

y = Xβ + ε

where y is a Tx1 vector, X is a TxN matrix, and β is a Nx1 vector of parameters. T represents the number

of observations, and N the number of predictor variables. Standard linear regression objectives minimize,

T

∑
t=1

(y− Xβ̂)2, (9)

with β̂ representing a traditional OLS estimate of the parameters. For N large relative to T, it is highly

likely this regression will yield poor out of sample predictions, as it will overfit the training samples. Ridge

regression can ameliorate this issue by adding the ridge penalty as in,

T

∑
t=1

(y− Xβ̂)2 + λ
N

∑
i=1

β2
i . (10)

The regularizing term shrinks the β estimates to zero and reduces overfitting in overly complex regression

problems.

In the nonlinear space the regression becomes,

y = f (X) + ε.

Build an approximation to f (X) with a function, φ : RN → RM and a transformed variable, zi = φ(xi)

which is now an M length vector. Also, represented by Z, a TxM matrix. Assume that f (xi) is linear in

7Classic textbook references can be found in Hastie, Tibshirani & Friedman (2009), and Murphy (2012). Also, there are excellent
descriptions in Exterkate et al. (2016) and Exterkate (2013).
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z, or f (x) = z′iγ, γ ∈ RM. Now we have a linear regression in the transformed space of z. At first, this

sounds good, but in a general nonlinear space M >> N, and also it is possible that M > T. The regression

would most likely overfit yielding relatively useless out of sample predictions. The ridge penalty can be

used again to restrict the regression coefficients, γ, in the new space.

All should theoretically work fine with this approach, but the computational costs of this regression are

large. The kernel trick maps the problem into another more computationally tractable space. First, the stan-

dard regression solutions would involve Z′Z, or a MxM matrix. For M large this could be problematic. This

matrix can be replaced with ZZ′, a TxT matrix. At first, this might not seem like much of an improvement,

but for large nonlinear expansions, M might be much larger than T, so the TxT matrix is an improvement.

The second part of this is to realize that ZZ′ involves cross products across φ() as in φ(xi)
′φ(xj). The final

step is to use special kernel functions designed to give k(a,b) = φ(a)′φ(b) where k(a,b) can be computed

quickly. We now can get simpler estimates for φ, and therefore f (x), which are functions of the kernel

function. For example a forecast for a new point x takes the form,

f (x) =
T

∑
t=1

αtk(x, xt). (11)

Although, still appearing computationally costly, this can be calculated relatively fast, and avoids problems

with possibly large values for M.

There are many kernel functions in use. This paper will concentrate only on the radial basis, or gaussian

kernel,

k(x, xt) = exp(−θ||x− xt||2). (12)

Intuitively, it measures the distance between two points, giving nearer points larger weight. It is normal-

ized with a bandwidth parameter, θ. Nonlinear functions can now be efficiently estimated, and used for

forecasting.

Two final issues remain. First, there are two hyper-parameters that need be tuned. These are θ and λ,

the bandwidth and ridge penalty respectively. They are optimized using a grid search which implements

a five fold randomized cross validation (250 runs) over a large sequence of parameter pairs. The pair

with the smallest test sample MSE is used as the optimal tuned parameters for the kernel used in all later

experiments.

Second, as in many nonlinear models there is an issue of data normalization. It is often standard pro-

cedure to preprocess all inputs by subtracting the mean, and dividing by the standard deviation. This
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nontrivial transform can have a big impact as these inputs are sent into the nonlinear kernel. The standard

kernel function often involves a single bandwidth parameter, θ. Technically, if this were following standard

nonparametric procedures the bandwidth would vary across all the input dimensions adding a relatively

high dimensional hyper-parameter. In this paper inputs will be normalized, but in a relatively careful fash-

ion. First, there are no mean adjustments. Since the radial kernel is distance based, it is not affected by

fixed shifts in the input data. The RV inputs are divided by their standard deviations estimated in a given

training sample. Since returns are close to uncorrelated over time the N period mean returns scale at ap-

proximately 1/
√

N, so they are multiplied by
√

N, and then all three lags (if all are used) are divided by

the standard deviation of the single period return estimated in the training data. This procedure gives an

extra set of 4 parameters estimated in training data.

2.4 Randomized cross validation

Most of the model testing will use a form of 5-fold randomized cross validation to both evaluate perfor-

mance, and also as a model comparison tool. The time series will be combined into (target, predictor) pairs

(yt+1, Xt) where yt+1 is the target volatility, RVt+1, and Xt represents a vector of information available at

time t. This includes lags, and sums of lags, of realized volatility, and returns as described. These pairs are

split into two distinct random subsets, training and testing with 4/5 in training, and 1/5 in testing. Train-

ing will be used for model estimation, and testing for out of sample model evaluation. The data splitting

processes will be performed many times in a monte-carlo generating both means and standard errors for

various measures of forecast performance.

3 Empirical results

3.1 Volatility features

Figure 1 shows the Dow realized volatility time series. It is adjusted to units of annualized standard devi-

ation. Average market volatility is usually in a range of about 0.15− 0.20. The mean for this series, which

is presented in table 1, is well below this level. This is due to the fact that the overnight variability is not

accounted for in these estimates. The figure shows typical volatility features with some unusually large

spikes in volatility along with periods of persistently high and low volatility. Figure 2 displays a histogram

for the time series, and clearly shows a right skew which should be expected for a series of standard devi-
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ations. Figure 3 repeats this for the log realized volatility values, and confirms the well known fact that RV

is close to log normally distributed.

Table 1 summarizes all the values used for prediction. The three realized volatility series report means

near 10 percent which are below the full daily volatility levels in the Dow. All three series show the positive

skew from the last figure, as well as excess kurtosis. Turning to the returns, they show much less skewness,

but it looks strong and negative. All three return series show excess kurtosis which is common for any

relatively high frequency return series. The final row reports values for the RQt fourth moment, or realized

quarticity. It shows extreme skew and kurtosis.

Figure 4 shows the autocorrelations for the daily realized volatility series. The are positive, large, and

decay very slowly. They still are positive at a lag of 250 days (about 1 year). This highly persistent behavior

in volatility is another well known feature, and will influence most of the benchmark models which are

used in this study.

3.2 Benchmark model selection

Since volatility prediction is well known, the choice of an appropriate benchmark model to compare with

kernel approaches is critical. Table 2 estimates various versions of the model developed in (Corsi 2009). The

table reports parameter estimates along with standard errors (in parenthesis). The final three columns show

overall goodness of fit measures with the Bayesian Information Criterion (BIC), the in sample R-squared,

and the in sample mean squared error (MSE). The latter two of these along with a simple check of coefficient

significance would suggest the most highly parameterised model as expected. The BIC measure reports a

tie between the last two. Given this evidence the best model using standard identification tools would be

the second to last line using three volatility lags, and two return lags.

This paper takes as given a target of the next day’s standard deviation as the desired forecasting object.

However, there are many ways that one could proceed to estimate this. Table 3 explores several different

approaches in building volatility forecasts. These approaches are inspired by the visual results from figure

3 which suggests a near log normal distribution for realized volatility. It is therefore possible that estimation

in log space might be the best way to go.8 Table 3 also implements the cross validation procedure which

will be used throughout the rest of this study. 250 randomized cross validations are performed, and the

means are reported in the table. Randomized sets of the sample are used for training (4/5) and out of

sample testing (1/5). Out of sample, or test MSE will be used at the criterion for finding the best model. In

8Much of the realized volatility literature operates with log volatility measures.
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all cases the best model from table 2 will be used.

Row one (RV/RV) in tabel 3 estimates the based model with raw standard deviations on both sides.

It is interesting that the basic linear model shows very little evidence of in sample overfitting in that MSE

and R2 estimates are very close. The second row, labeled RV/log(RV) keeps the standard deviation target

on the left side of the regression, but logs all the three standard deviation measures on the right hand side.

This leads to a large decrease in R2 both in training and testing periods. The third row replaces the left side

RV value with log(RV). The final standard deviation estimate is obtained by simply exponentiating the

estimated value as in exp(E log(RV)). Performance in terms of test MSE is still poor relative to the initial

benchmark. The final row uses the fact that this estimate is a biased estimate of the standard deviation. It

adjusts the log volatility estimate using

E(RV) = eE(log(RV))+(1/2)σ2
RV , (13)

and is referred to as the bias adjusted estimate. The standard deviation for the log(RV) value is estimated

using training data only. This bias adjustment, does not help the estimate very much at all. The drop in

performance is probably due to the fact that the RV levels are not precisely log normal which is required

for the adjustment to work.

Results from tables 2 and 3 suggest the optimal linear comparison model should be estimated in stan-

dard deviations on both target and predictors. Furthermore, table 2 also recommends the model with 3 lags

in realized volatility, and 2 in the returns part. The next table explores some of the nonlinear modifications

that were suggested earlier.

In table 4 the previously described nonlinear specifications are explored to see which, if any, improve

on the base model in terms of test sample forecast performance. The first row, labeled Base, uses the basic

linear models with 3 lags of volatility, and two in returns. The second row, labeled Base+rt|t−21 adds the

extra return lag to recheck if it provides any meaningful improvement in terms of test sample MSE. The

table shows that it does not, and agrees with our previous decisions based on BIC. The next row adds the

realized quarticity as in equation 7, and it shows an MSE improvement in both training and testing samples.

The next row implements the second nonlinear form from equation 8, but keeping the coefficient on lags

of RQ fixed at zero. It shows improvement over the base linear model in terms of test sample MSE, but it

falls short of the RQ model. Finally, all terms are added as shown in equation 8. This highly parameterized

model obviously reports the smallest training MSE, but falls short of the more parsimonious Base+RQ only
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model from row 3.

These results suggest two useful comparisons for the kernel ridge experiments. First, the basic linear

model will be used with three volatility, and two return lags. Second, this model will be augmented with

the RQ interaction term as in equation 7.

3.3 Kernel comparisons

The next experiment is a quick test of the kernel ridge regression in terms of finding known nonlinear

structure. RVt will be projected on simple functions of lagged returns and a kernel which should incorporate

all nonlinear structure. The results are shown in table 5. The forecast target is the one day head RV measure.

In case (A) RV is regressed on simple lagged returns. Volatility is fundamentally a nonlinear function of

returns, so not much predictability should be expected in this case. The first row shows that this is definitely

the case. The test sample R2 is nearly zero. The values in the MSE column present first the mean MSE

across 250 cross validation draws. The value in parenthesis presents the estimated standard error for the

MSE mean. Finally, the value in [] reports the fraction of these runs generating a MSE test forecast smaller

than the kernel model estimated in (D).

Obviously, at least lagged squared returns need to be used to help in forecasting future realized volatil-

ity. These are added in model (B), reducing MSE, and bringing the test R2 to 0.154. The value in brackets

again shows that the MSE is still bettered by the kernel ridge model. The final standard specification adds

the lagged return to capture the volatility asymmetries from rising and falling markets. Forecast perfor-

mance again improves. The final row presents the estimates from the kernel ridge model using only a

simple lagged return as input. It is then able to nonlinearly transform this value to develop an optimal non-

linear specification. It is clear in the table that this value is less than all three of the others by a significant

amount. None of the standard models can achieve the test sample forecast performance of kernel model.

This shows that it is finding some interesting nonlinear patterns beyond simply combining squared returns

and returns in a linear structure. There must be some more complex nonlinear pattern at work in the data.

These results are an interesting experiment, but they are not the primary objective in this paper since

lagged returns and squared returns are not optimal forecasts for realized volatility. Table 6 reports core

comparisons for the paper. In this table the linear and nonlinear models from equations 6 and 7,

RVt+1 = β0 + β1RVt + β2RVt|t−4 + β3RVt|t−21 + β4rt + β5rt|t−4 + µt+1,
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and,

RVt+1 = β0 + (β1 + β1QRQ1/2
t−1)RVt + β2RVt|t−4 + β3RVt|t−21 + β4rt + β5rt|t−4 + µt+1,

respectively, are compared with the kernel regression using,

RVt+1 = f (RVt, RVt|t−4, RVt|t−21,rt,rt|t−4) + µt+1.

They are referred to as Linear, Nonlinear, and Kernel in table 6. The table again reports training and testing

MSE’s and R2 estimates from 250 randomized cross validations. It further reports mean absolute error esti-

mates (MAE) as well from the same runs. The first row reports estimates from the linear model. Comparing

the MSE of 3.75e− 6 with the value from the last row of 3.45e− 6 shows an improvement going to to the

kernel. This improvement is tested first by reporting the fraction of linear model estimates out of the 250

cross validation runs which give a value as small as the corresponding value from the kernel ridge. This

value, in brackets, shows that this does not happen. This table also estimates the MSE and MAE differences

between the linear model and the kernel model. These are given in the row labeled Linear difference. Both

values are significantly positive (standard errors are in parenthesis) indicating larger forecast errors for the

linear model.

The row labeled Nonlinear repeats the previous comparisons using the nonlinear framework. Of all the

standard models used, this benchmark has shown the best performance in terms of test sample MSE. This

is clear from table 6. It shows both smaller MSE and larger R2 than the linear model, as well as smaller

MAE as well. There is again improvement in MSE from moving to the Kernel model from this one. The

change from 3.693e− 6 to 3.450e− 6 represents and improvement of about 6.5 percent. Again, none of the

nonlinear models are able to beat the kernel in any of the 250 monte-carlos as shown by the value of 0 given

in the brackets. Finally the difference in estimated MSE is shown in the line, Nonlinear difference, and is

significantly positive as is the corresponding value for the MAE.

3.4 Dynamic strategies

The previous results have shown that forecasting improvements from a kernel ridge appear strong and

significant against two standard volatility forecasting models. Are these results economically significant?

This section will explore this using two different dynamic portfolio strategies. First, a volatility control

strategy will be implemented using various comparison volatility forecasts to see how well the strategy
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does in terms of hitting an exante target volatility level. Second, the estimated volatility will be used in a

myopic optimal trading strategy which does not try to forecast returns, but uses the conditional variance

estimate to adjust portfolio fractions.

Dynamic volatility control strategies are simple trading systems designed to hit a target volatility level.9

Investors are assumed to move funds between a risky asset and a risk free investment giving a portfolio

return of,

Rp,t+1 = αtRt+1 + (1− αt)R f ,t+1. (14)

The standard deviation of this portfolio is

σ(Rp,t+1) = αtσ(Rt+1) (15)

where σ(Rt+1) is the standard deviation of the risky asset. Targeting a level of volatility at σC gives a

portfolio fraction of

αt =
σC

RVt+1|t
(16)

where (RV)t+1|t is the forecast for the one period ahead standard deviation from a given volatility model.

Table 7 presents these results. The strategy is applied to open to close returns for the target day for the

volatility forecast. Portfolio returns and standard deviations are estimated in the testing period which is

again clean from model estimation biases. The table again reports means from 250 cross validation runs.

The target volatility is set to 0.10 per year, and numbers are reported on an annualized basis.

For the line labeled Naive, the forecast simply uses the unconditional standard deviation in the training

sample. The mean value is close to 10 percent, and the MSE around the target is 2.2e − 5. Linear refers

to the base linear volatility forecasting model, and it shows a dramatic improvement in the variability

of the portfolio around target volatility. The two nonlinear models, Nonlinear and Kernel, show further

improvements, but they are less dramatic. Moving from the nonlinear model to the Kernel ridge model

shows a MSE improvement of only about 3.2 percent. As a comparison, a strategy is run using the actual

realized volatility on day t + 1. This counter factual experiment is done to test that there are dramatic gains

possible from accurate volatility forecasting. Results are given in the row labeled True. The MSE about

the target shows a reduction of well over 100 times, so good volatility timing is definitely something that

would show up in these results.

9See Taylor (2017) for examples and performance comparisons.
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The final column reports the Sharpe ratio for these strategies. Values are a little higher than one might

expect since they are not including overnight variability. Also, this is not a strategy that is designed to

improve Sharpe ratios. As a matter of fact, if risk and return are moving together dynamically as they

should, then Sharpe ratios should not change much across the strategies. There is a moderate boost in the

Sharpe ratio in moving to the dynamic strategies, but values across the three strategies are similar. That

values are dramatically different from the experiments using the expost volatility levels. Obviously, using

the future information has a dramatic impact on the performance of the strategy. Again, this experiment is

just for comparison purposes, and is not implementable.

The last strategy looks at a dynamic trading system designed to fit an optimal mean/variance investor.

The investor is assumed to be myopic with CRRA aversion preferences. It is well known (see Campbell &

Viceira (2002)) that the optimal fraction of wealth to put in the risky asset in this case is,

αt =
E(rt+1)− r f ,t+1 + (1/2)RV2

t+1|t

γRV2
t+1|t

, (17)

where γ is the coefficient of relative risk aversion, and RVt+1|t is the volatility forecast for t + 1 made at

time t. E(rt+1) uses the unconditional mean log return from the training period. Table 8 reports annualized

certainty equivalent returns (CE) for values of γ = [2,3,4] for the same set of volatility forecasting strategies

from the last table. There are some improvements in shifting to a dynamic variance forecasting system (ie.

moving from Naive to the other strategies), but in general the CE values across the three types of volatility

forecasts are not all that different. Obviously, using a strategy with the realized expost variance, again

reported in the row labeled True, shows that effective volatility forecasting is useful for these investors.

4 Conclusions

This paper has explored several nonlinear forecasting tools as applied to forecasting a daily realized volatil-

ity series for the Dow Industrials. The results show that a common machine learning tool, kernel ridge

regression, was able to find nonlinear features that generated statistically significant improvements in out

of sample forecasts. It was able to improve on a basic linear model, and also a nonlinear model. In volatility

space, where there is a lot of structure, the kernel ridge model is able to detect and utilize some of this

structure.

It should be noted that the kernel ridge approach was able to generate improved forecasting with no
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complex model specification. There was no need to coax the model with constructed nonlinear feature

variables. It was able to learn them itself. The nonlinear specifications used in this paper were the result of

many years of model explorations.

The final results show that most of these improvements are significant to a trader using a dynamic

volatility control strategy. However, the marginal gains of kernel ridge versus the nonlinear specification

may not be economically important. On the other hand, kernel ridge did not require any careful model

prespecification, and its usefulness may be large in areas where lots of nonlinear model exploration has not

been done. Further analysis of simple trading systems, such as volatility control, is an important issue for

future research.

For a realized volatility forecasting problem, kernel ridge regression is a reliable way to include nonlin-

ear features in modeling. It also appears to be fitting nonlinear features which have not yet been discovered

in standard econometric models.
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Table 1: Summary Statistics

Mean Std Skewness Kurtosis
RVt 0.113 0.0038 1.44 2.22
RVt|t−4 0.116 0.0042 2.82 14.1
RVt|t−21 0.116 0.0039 2.58 11.5
rt 0.077 0.1732 −0.19 8.10
rt|t−4 0.078 0.0725 −0.74 6.01
rt|t−21 0.076 0.0325 −0.94 3.57
RQt 1e− 6 4e− 6 13.82 299

Summary statistics for realized volatility measures. RV represent daily realised volatility estimates, and are presented
in units of annual standard deviations. r represent log returns over the different lagged horizons. For consistency the
returns are also scaled up to annualized units by multiplying by 250. The final row presents the realized quarticity
estimates.
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RVt+1 = β0 + β1RVt + β2RVt|t−4 + β3RVt|t−21 + β4rt + β5rt|t−4 + β6rt|t−21 + µt+1

Table 2: Benchmark model fitting

β1 β2 β3 β4 β5 β6 BIC R2 MSE
0.830 −5.932e4 0.688 4.65e− 6
(0.007)
0.526 0.322 −5.997e4 0.719 4.18e− 6
(0.013) (0.012)
0.520 0.191 0.166 −6.009e4 0.725 4.10e− 6
(0.013) (0.017) (0.015)
0.0469 0.224 0.174 −0.034 −6.029e4 0.734 3.97e− 6
(0.013) (0.017) (0.015) (0.002)
0.447 0.190 0.221 −0.026 −0.055 −6.034e4 0.736 3.92e− 6
(0.014) (0.017) (0.016) (0.003) (0.007)
0.448 0.178 0.226 −0.0250 −0.050 −0.035 −6.034e4 0.737 3.92e− 6
(0.014) (0.018) (0.016) (0.003) (0.007) (0.015)

Model estimation: Fitted parameters, full sample. Estimation is by OLS, and numbers in parenthesis are standard errors
on the parameter estimates. For this table only, R2 is the traditional, in sample, R2 measure. BIC refers to the Bayesian
information criterion, or Schwarz criterion used for in sample model selection. MSE is the in sample Mean Squared
Error. RV values are in units of daily standard deviations, and r are logged daily returns.
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Table 3: Target selection

Target/Predictors Train MSE Train R2 Test MSE Test R2

RV/RV 3.742e-6 0.731 3.751e-6 0.731
RV/log(RV) 4.019e-6 0.712 4.037e-6 0.711
log(RV)/log(RV) 3.967e-6 0.715 4.005e-6 0.712
log(RV)/log(RV) bias adjust 4.810e-6 0.655 4.836e-6 0.653

Target model comparisons: Target refers to left hand forecast target in use, both the RV, or standard deviation target,
and a log(RV), logged standard deviation. Predictors refer to right hand side variables which are either raw standard
deviations or logged. The final row adjusts for bias in the log volatility predictor. Training and testing data are means
across 250 randomized cross validations using 4/5 in the training sample and 1/5 in the testing sample.
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Table 4: Model selection

Model Train MSE Train R2 Test MSE Test R2

Base 3.742e-6 0.731 3.751e-6 0.731
Base +rt|t−21 3.731e-6 0.732 3.780e-6 0.729
Base+RQt 3.673e-6 0.737 3.678e-6 0.736
Base+Nonlin 3.690e-6 0.735 3.746e-6 0.731
All+Nonlin+RQt 3.641e-6 0.739 3.695e-6 0.735

Model comparisons: Base is standard linear framework. +rt|t−21 adds extra one month lag on returns. RQ adds the
interaction term with realized quarticity. Nonlin adds the general nonlinear interaction components. The final line adds
all of these. All results are reported means from 250 randomized cross validations using a randomized 5 fold train/test
split.

21



(A) RVt+1 = β0 + β1rt

(B) RVt+1 = β0 + β1r2
t

(C) RVt+1 = β0 + β1r2
t + β2rt

(D) RVt+1 = f (rt)

Table 5: Primitive Model Comparisons

Model Train MSE Train R2 Test MSE Test R2

(A) 1.354e-5 0.028 1.357e-5 0.026
(4.19e-8)

[0.00]
(B) 1.174e-5 0.158 1.180e-5 0.154

(4.59e-8)
[0.00]

(C) 1.141e-5 0.181 1.153e-5 0.173
(4.73e-8)

[0.00]
(D) 1.014e-5 0.273 1.014e-5 0.273

(3.21e-8)

Model comparisons: Simple models compared to kernel ridge regression (D). Specifications (A), (B), and (C) represent
simple modeling approaches to forecast daily realized volatility. All results are reported means from 250 randomized
cross validations using a randomized 5 fold train/test split.

22



Table 6: Kernel Ridge Forecast Comparisons

Model Train MSE Train R2 Test MSE Test R2 Test MAE
Linear 3.740e-6 0.732 3.758e-6 0.731 1.407e-3

(1.50e-8) (1.40e-6)
[0.00] [0.00]

Linear difference 3.120e-7 6.016e-5
(4.37e-9) (7.56e-7)

Nonlinear 3.670e-6 0.737 3.693e-6 0.736 1.393e-3
(1.43e-8) (2.09-6)

[0.00] [0.00]
Nonlinear difference 2.427e-7 4.586e-5

(5.06e-9) (8.33e-7)
Kernel 3.343e-6 0.760 3.450e-6 0.753 1.347e-3

(1.33e-8) (2.03e-6)

Model comparisons: Linear represents the basic linear comparison model with three lags of RV, and 2 of returns.
Nonlinear represents the addition of the realized quarticity interacted with the first lag in volatility. Differences shows
the MSE and MAE differences between the appropriate model and the Kernel estimated error. Values in parenthesis
are standard errors. Values in brackets represent the fraction of models able to beat the kernel in the 250 monte-carlo
runs. All results are reported means from 250 randomized cross validations using a randomized 5 fold train/test split.

23



Table 7: Volatility Control

Volatility Model mean(vol) MSE(target - vol) Sharpe ratio
Naive 0.0997 2.21e− 5 0.52
Linear 0.0998 8.19e− 6 0.62

Nonlinear 0.0998 7.91e− 6 0.59
Kernel 0.1000 7.78e− 6 0.59
True 0.1000 1.19e− 8 1.91

Volatility control strategy results. The first column is the mean volatility for the strategy whose target is set to 0.10. The
second column is the MSE of the distance to the target volatility for the simulated portfolios across 250 cross validation
runs. The last column is the Sharpe ratio for the dynamic volatility control portfolios in annualized units. The strategy is
implemented only within each day (open to close). Naive is a strategy using only unconditional estimates of volatility.
Linear implements the linear model framework. Nonlinear adds the estimated quarticity in a nonlinear interaction, and
Kernel uses the kernel ridge forecast. True substitutes in the expost observed volatility on day t + 1 for comparison.
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Table 8: Dynamic strategy: Annualized CE

Volatility Model γ = 2 γ = 3 γ = 4
Naive 0.044 0.035 0.032
Linear 0.052 0.044 0.038

Nonlinear 0.047 0.047 0.036
Kernel 0.052 0.044 0.038
True 0.184 0.176 0.171

Dynamic portfolio strategies. Optimal portfolio holdings for different volatility forecasts, and different levels of rela-
tive risk aversion. All values are reported as annualized certainty equivalent returns. Naive is a strategy using only
unconditional estimates of volatility. Linear implements the linear model framework. Nonlinear adds the estimated
quarticity in a nonlinear interaction, and Kernel uses the kernel ridge forecast. True substitutes in the expost observed
volatility on day t + 1 for comparison.
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Figure 1: Dow daily realized volatility (annualized Std.)
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Figure 2: Dow daily realized volatility density
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Figure 3: Dow daily realized volatility density
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Figure 4: Dow daily realized volatility autocorrelations
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