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Abstract

This short note compares and contrasts two forms of learning which are present in most agent-based

financial markets. First, passive learning refers to a form of “as if rationality” where wealth accumulates

on strategies which have done relatively well. Second, active learning refers to the active switching of

agents across strategies. Most heterogeneous agent markets contain some form of both these types of

learning. From what we know so far the dynamics of each may be quite different, and may yield a rich

and complex joint dynamic.
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1 Introduction

The construction of agent-based financial markets is now a field with nearly 20 years of experience to learn

from. There are many basic principles of methodology and design that have been learned over the years. This

short note will briefly comment on one aspect of markets and learning that is often ignored, the interaction

between active and passive learning dynamics. I will define and argue that both these forms of learning are

important to financial market dynamics. Both of these have been used by many authors, but rarely have

the interactions between the two been explored. Further, few authors explore the relative strengths and

weaknesses of using these forms of learning in a financial setting. In this way, this note serves as a quick

reminder about what we are doing, and as a suggestion for important future research into how heterogeneous

agent financial markets function.1

It will be important to first define active and passive learning in a agent-based market. Passive learning

refers to the accumulation of wealth in strategies which have been successful. Good strategies thrive and

become a larger part of the market, while weak strategies eventually die off. This is a version of “as if

rationality” described originally in Friedman (1953). It is often used as a metaphor for convergence to some

form of market efficiency, or at least a selection mechanism which would weed out ineffective strategies. The

basic premise of who might survive in the long run out of a sea of different strategies is an old one in finance.

It is tied to the original betting rules of Kelley (1956), and growth optimal portfolios which were debated

in the the 1960’s and 1970’s in papers such as Samuelson (1971) and Hakansson (1971). A recent and up to

date survey on this area is contained in Evstigneev, Hens & Schenk-Hoppe (2009).2 In the next section I

will describe some of the modeling features, strengths, and weaknesses of passive learning.

The other form of learning, active learning, may be closer in spirit to what people are thinking about

when they imagine learning in a financial or economic setting. Agents actively chose strategies, with some

well defined objective function in mind. This form of learning is part of almost all of the heterogeneous

agent markets which consider dynamic strategy adjustment. Agents may be switching over fixed strategies,

or over a set of evolving strategies as in markets built with genetic algorithms. In all cases, there is an active
1 This is not a survey of learning, or heterogeneous agent models in finance. This is well beyond the scope of this short

paper. On heterogeneous agent models many excellent surveys exist including, Chiarella, Dieci & He (2009), Hommes (2006),
LeBaron (2006), and Lux (2009). On learning models in finance in general a recent survey of this large literature can be found
in Pastor & Veronesi (2009).

2 Another early theoretical derivation is in Breiman (1961). A nice summary of this is in Markowitz (1976). Blume & Easley
(1990) and Blume & Easley (2006) state the problem in the context of a utility maximizing portfolio decision. The latter paper
paper proves that in a complete market world the convergence to true beliefs will occur regardless of preference parameters.
However, the authors point out that in an incomplete market world this convergence is not guaranteed. Evstigneev, Hens &
Schenk-Hoppe (2006) look at an incomplete markets world with endogenous prices. In their framework the growth optimal
strategy will dominate any other competing strategy in terms of acquiring all wealth in the long run.
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attempt by agents to move their wealth into strategies that have performed well in the recent or distant

past.

The next section will make these ideas clearer in a simple market framework. It will also go through

some of what we know about these systems, and some conjectures about what we may find out in the future.

2 A simple model framework

First, I will describe a simple market framework, from which the principles of passive and active learning

will be made clear. This is far from a fully developed market, and only represents a skeleton for a market

representation. In the most basic of markets I will assume a world with a risky asset that pays a dividend

at time t, Dt. The dividend will follow some arbitrary stochastic process.3 Individual agents (indexed by i)

are assumed to purchase shares in this risky asset, St,i. They also hold, Bt,i units of a risk free asset which

pays an interest rate rf . The intertemporal budget constraint for agent i is given by

Wt,i = PtSt,i +Bt,i = (Pt +Dt)St−1,i +Bt−1,i(1 + rf )− Ct,i (1)

Wt,i represents the wealth of agent i at time t, and Ct,i is consumption at time t. If consumption is assumed

to be some fraction of wealth determined by, λ(It), a function of information at time t, the above budget

becomes

Wt,i = PtSt,i +Bt,i = (1− λ(It))((Pt +Dt)St−1,i +Bt−1,i(1 + rf )). (2)

Two further assumptions can be useful in modeling. First, simplifying the consumption decision to a constant

fraction of wealth gives,

Wt,i = PtSt,i +Bt,i = (1− λ)((Pt +Dt)St−1,i +Bt−1,i(1 + rf )). (3)

A second, and less used, assumption, is to set rf = 0. This can be done to restrict the incoming resources

to the economy to the dividend stream alone which makes the model a simple general equilibrium economy

with costless storage in the consumption good.

Learning in this world takes place in the portfolio choice of individual agents. Assume that αj(It) is a

investment strategy (indexed by j) that yields the fraction of wealth to put into the risky asset. In general,

3Often this can be calibrated to some actual macro series.
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an agent could spread a fraction of wealth over different strategies. Let ωi,j be the fraction of wealth of

agent i in strategy j. In most agent-based models this value is either zero or one as agents concentrate their

wealth in only one strategy. Both of these are functions of information at time t, It. Share demand for an

agent i summed over strategies j is given by

St,i =

∑J
j=1 ωi,j(It)αj(It)(1− λ)Wt,i

Pt
. (4)

This share demand, and strategy is important in exploring active and passive learning. The key feature is

that the demand for shares is proportional to wealth. This would be the outcome of most constant relative

risk aversion preferences (not constant absolute risk aversion). The economy is closed by setting the total

supply of shares to 1,

1 =
I∑

i=1

St,i. (5)

It is important to note that pricing in this market depends not on the number of traders using a given

strategy j, but on the wealth in strategy j which would be written as

Zt,j =
I∑

i=1

ωi,j(It)Wt,i. (6)

Further learning dynamics can take place through the adaptive learning of the rules rules themselves.

In this case, the rules become dynamic, and parameterized by θt, giving α(It, θt). Learning occurs in the

rules as θt moves through time. This corresponds to classic learning models such as Bayesian updating or

recursive least squares.4

This now forms the skeleton for a simple agent-based economy with a working financial market. Details

of agent learning and behavior go into building sets of strategies, αj(It), and methods for agents choosing

strategies over time. A model of this form would have both active and passive learning, and I will use its

structure to clearly define the concepts.

3 Passive learning

This market could represent pure passive learning with no active learning. This case would correspond to

ωi,j being constant, and agents stay with fixed strategies. Their strategies may be dynamic, in that αj(It)

4Some agent-based learning models go further in that the functional forms of the rules themselves are allowed to change
over time as in Chen & Yeh (2001), or Arthur, Holland, LeBaron, Palmer & Tayler (1997).
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is allowed to depend on current and past information in complex fashions, but the agents all stay with their

given strategies no matter how poorly they are doing. For model design this is a powerful learning concept.

As long as there is at least some persistence in the agents’ decisions, ωi,j , there will be some form of passive

learning, or wealth adjustment to successful strategies in the market.5 So a strength of this form of learning,

is that it is easy to model, and probably somewhat ubiquitous in all real and artificial markets.

Unfortunately, it comes with several drawbacks that are important to consider. First, passive learning

is not equivalent to utility maximization. Wealth does not select utility maximizing strategies except in

particular cases.6 Many authors have made this point, but one of the sharpest examples is Blume & Easley

(2006). The key result there is that with incomplete markets, and preferences that deviate from log, wealth

will move to strategies with beliefs that deviate from true probabilities.

LeBaron (2007) provides a simple real world calibrated example showing how this bias may be important

in asset pricing and observed investor behavior. The experiment considers investors constructing portfolios

from a risky asset yielding an exogenous returns process, and a risk free bond. Returns are constructed as

in Campbell & Viceira (2002),

rt+1 = xt+1 + et+1 (7)

xt+1 = µ+ ρ(xt − µ) + ηt+1. (8)

which is a common representation which contains a predictable component, xt, which is only observed subject

to observational noise et+1.7 The return parameters are calibrated to replicate actual financial return series.

The parameters for the process are given in table 1, and the simulations (and portfolio adjustments) are

made at weekly frequencies, and are run for the equivalent of 500 years.

The optimal forecast is given by the Kalman filter, and has the form,

Et(rt+1) = ft+1 = µ+ ρj(ft − µ) + wj(rt − ft). (9)

The parameter wj is the critical gain parameter which controls how recent observations should be weighted

when building forecasts. Using the true time series parameters the optimal parameters, (w∗, ρ∗) can be

5 There is one important class of models where passive learning is inactive. Models with CARA utility and adaptive rule
selection generally have no passive learning component. Two very different examples of this are Brock & Hommes (1998) and
Arthur et al. (1997). Price formation depends on the fraction of traders in a given strategy, and not on their wealth.

6The best known case would be log utility.
7 See Pastor & Stambaugh (2009) for a more complete treatment of systems of this form in finance.
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determined. For the parameters used here these are (0.0164, 0.95).

Assume investors determine their portfolio fraction using a standard mean variance decision rule,

αt,j =
Ej

t (rt+1)− rf + σ2
t /2

γσ2
t

, (10)

where the expectation corresponds to a given parameter pair (wi, ρi).8 γ is the coefficient of relative risk

aversion. The variance, σ2
t , is assumed to be constant and known to all strategies. In the following experi-

ments α is bounded between −0.5 and 2 allowing for some short sales and leverage. Wealth evolution will

be simulated for a grid of different forecast strategies.9

When γ = 1 preferences correspond to log preferences and the passive wealth evolution selects the

optimal forecast parameters. However, when γ differs from one, interesting results are observed in terms of

who survives in the long run. This can be seen in figure 1. The lower panel displays the utility contours

across the different strategies measured as the annual certainty equivalent return.10 The utility maximizing

strategy is centered on the true Kalman forecast parameters. The upper panel displays contours based on

the final wealth distribution after 500 years of simulated data and portfolio strategies. It shows the clear bias

in passive learning. The maximum wealth forecast corresponds to a parameter pair of (ω, ρ) = (0.06, 1.00)

which is far from the true parameters, both in terms of actual values, and in terms of expected utility. The

estimated certainty equivalent return at this point is only 2.9 percent per year which compares to 5.25 at

the maximum utility point.

It is also interesting that the gain parameter is biased high. This would correspond to agents putting too

much weight on the recent past than they optimally should. If one were to look the the behavior of surviving

agents in this world relative to their observed time series, they would be deemed irrational. The large gain

parameters might even suggest they were “momentum traders,” putting a large amount of weight on recent

trends. Effectively, the biased parameters generate agents who behave closer to log utility. The key point

here is that wealth evolution alone selects for something other than rationality, and therefore it should not

be confused with rationality.11

A second, but much less explored, feature of passive learning, is that it may be very slow. Few models
8 See LeBaron (2007), or Campbell & Viceira (2002) for derivations and connections to intertemporal preferences. The

variance term in the numerator can be thought of as an adjustment for the fact that these are log returns.
9The consumption fraction, λ, is irrelevant for wealth races of this form where it is considered to be the same across all

agents. Each period all agents consume the same fraction of wealth, so the relative performance is not affected by λ.
10 This is the risk free return which would generate the same utility as the return on the risky asset.
11This point has been made by a large number of papers. For a result directly tied to Friedman’s examples of firms and profit

maximization see Radner (1998), and also Winter (1982).
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try to assess the speed of adjustment, since this would depend on calibrating models to real data, and real

strategies. However, Berrada (2009), LeBaron (2007), and Yan (2008) all suggest caution on the ability of

of this form of learning to be relevant in real data due to its very slow speed. They show that in reasonable

financial models convergence may be measured in units of decades, so that extreme patience may be required

for this form of learning to be relevant. This is an important question for learning researchers to be concerned

with, and should be further explored.

Several early papers also looked at pure wealth evolution, or passive learning, across simple trading

strategies. Chiarella & He (2001) and Levy, Levy & Solomon (1994) are both good examples of this. It is

interesting to note that both use log preferences (or demands which are closely related to them), so in both

cases wealth selection and utility maximization coincide. More recent papers have tried to expand these to

include an active learning channel, but few papers have tried to address the possible deviations in learning

objectives that might occur when the utilities deviate from log.

4 Active learning

Allowing agents to begin adjusting their strategy choices ωi,j(It) changes this to a model incorporating

active learning. Active learning is intuitively appealing. It seems like something agents are doing in the real

world as they adjust behavior to new information.12 However, unlike passive learning, modeling this type of

learning is challenging, and there are no clear paths for the agent-based model builder.13 The builder needs

to decide on many aspects of how agents select optimal rules. First, what sort of objective function should be

used? Should it be profits, or some estimate of expected utility? Second, how much past data, or memory,

should this estimator work with when building these estimates? Finally, what fraction of agents should be

considering changing rules each period? Should it be a small fraction, or all agents? Should the decision to

update depend on current market activity? These are only a few of the many open design questions that

have to be answered to model active learning.

As mentioned earlier, active learning can also involve adjusting the forecasting rules over time by changing

the parameter, θt, in α(It, θt). This drives a second learning dynamic beyond agents adapting over rules.

Depending on how the model is built this might also follow a utility based gradient, but the speed relative to

dynamic rule selection is not clear. It would depend on the structure of the learning model, and how much
12 The evidence in support of various forms of active learning extends beyond casual introspection. Laboratory evidence

shows some support for various forms of active learning. Some of this work in financial markets is surveyed in Hommes (2010).
13This is where Sims (1980)’s critique of deviations from rationality is in full force.
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they allow the parameters to change given recent observations from the time series.

In the literature on active learning, some frameworks have proved useful and relatively easily applied

in many different cases. A good example of this is the simple discrete choice model originally popularized

by Brock & Hommes (1997). It is straight forward, yields strong analytic results, and has good micro

foundations. However, even in this framework several of these design questions are still open, such as

memory, and the fraction of the population updating. Furthermore, the dynamics depends on a crucial

parameter, the intensity of choice, that needs to be pinned down.14

Models which use only constant absolute risk aversion along with some form of adaptive learning are pure

active learning because the accumulation of wealth does not impact the results. Agents share demands do

not depend on their relative wealth, and therefore the dynamics of these markets don’t depend on any sort

of passive wealth accumulation operating in the background. These purely active learning models don’t fit

into the wealth share demand framework outlined above which is inspired by constant relative risk aversion

preferences. More recently wealth has been added to the Brock & Hommes (1998) framework as in Anufriev

& Dindo (2010) Another example which combines both active and passive learning in a small set of trading

strategies is Chiarella & He (2008). The models in LeBaron (2001) or LeBaron (2010) both include passive

and active learning, and use a framework designed to eventually untangle their impact. In all these models

learning is a hybrid between both active a passive forms, but there are still few general results on how the

different forms of learning interact.

An important issue for adaptive learning, is whether its dynamics are driven more by noise, than actual

fitness of various forecasting rules. Given that financial data are very noisy, and attempts to evaluate relative

forecasts are often not conclusive, it is likely that in an agent-based market, generating realistic data, the

adaptive learning process may be adapting to noise. Movements in strategy space may be more due to

genetic drift than actual fitness differences. While this is something researchers should be aware of, it may

not be a big problem, since this noisy rule adjustment may be quite realistic.15 It would correspond to

investors shifting funds over mutual funds in response to recent performance.

Figure 1 also gives a glimpse of active learning. Most all active learning systems operate on some expected

utility gradient. Therefore, if agents were to make choices across rules based on expected utility they would

be approaching the utility maximization point in the lower panel that represents the true Kalman filter

parameters. The key question for active learning would be how fast do they get there, and how does this
14Important current work has moved in the direction of estimating the intensity of choice as in Goldbaum & Mizrach (2008)

or Boswijk, Hommes & Manzan (2007).
15It reminds one of Fisher Black’s discussions in Black (1986).
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learning mechanism coexist with the passive wealth evolution in the top panel. Finally, it is important to

stress that this model with its completely exogenous returns process is only a rough thought experiment. In

actual markets the endogenous response of prices, and therefore returns, is critical to determining the overall

wealth dynamics in a system.

5 Conclusions

Realistic heterogeneous agent models of financial markets need to take into account both passive and active

learning. Researchers should be aware that they are often using both of these in various modeling frameworks.

Each comes with its own set of issues. Passive learning is easy to model, but does not necessarily select for

utility maximization, and it may be slow. On the other hand, active learning can move at reasonable speeds,

and seems to be an important part of observed behavior. Unfortunately, it is difficult to model, and involves

many degrees of freedom. Also, it may often be adapting to noise in financial time series.

In real markets we probably see some combination of these two forms of learning. They may take place

at different speeds or time scales, and might generate interesting dynamics as they interact with eachother.

Eventually, understanding the impact of both these forms of learning will be important to understanding

the dynamics in real financial markets.
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Table 1: Return Parameter Values
Parameter Value
rf 0.02
E(rt) 0.07
σr 0.20
σ2

x/σ
2
r 0.02

ρ 0.95

Description: Parameters for return time series. All values are annualized, but simulations are done at the
weekly frequency. rf is the risk free interest rate. E(rt) is the unconditional expected real return on the
risky asset. σr is the corresponding annual standard deviation. σ2

x/σ
2
r is the signal to noise ratio in the

returns series. ρ is the AR(1) persistence parameter for the expected return process.
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Figure 1: Wealth and utility surfaces for γ = 3.
This upper panel in this figure shows the wealth distribution after 500 years estimated as a mean over a
100 run cross section. The figure shows the density over the different strategies indexed by the memory and
Kalman gain parameters. The height measures the density at each grid point relative to a uniform density.
The lower panel measures the expected utility of each rule reported in units of annual certainty equivalent
returns. The maximum of the wealth density is at the (gain, memory) pair of (0.06, 1.00). The annual
certainty equivalent return at this point is 2.91 percent which compares to an annual certainty equivalent
return of 5.25 at the optimal forecast parameters.
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