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Abstract

This paper presents empirical evidence on the feasibility and value of various simple volatility forecasts

in the construction of dynamic portfolio rules. Rules using limited past data are compared with rules using

longer series in risk estimation. It is shown that in terms of performance, a utility based objective across

these rules favors short memory/high gain forecasting rules. This empirical result is connected to recent

work in agent-based finance which suggests that short memory volatility sensitive traders may be very

important to the dynamics of long swings in asset prices around fundamentals.
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1 Introduction

Over thirty years ago Shiller (Shiller 1981) demonstrated that aggregate asset prices moved too much to

be explained by their aggregate fundamentals (either earnings or dividends). Since then this result has

been rethought, and replicated many times over. It is directly connected to long range return predictability

coming from regressions on price-dividend or price-earnings ratios1. It also is related to cross sectional

features in asset pricing, as well as features in the term structure and foreign exchange markets.2 Finally, the

fact that asset prices may appear riskier than their underlying fundamentals is part of the equity premium

puzzle as well. Most of the major puzzles in modern macro finance lead one back to the original excess

volatility issue.

Many explanations have been explored involving varying degrees of rationality assumed for economic

actors. Because asset prices involve some form of discounted cash flow, all models explaining price volatil-

ity must deal with the movements of agents’ expectations of future cash flows (the numerator) and/or some

measure of risk (the denominator). Explanations involving expected growth rates in cash flows have been

tricky given that many of these series show little predictability. One possibility is the long run risk model

which assumes that changes in growth rates are highly persistent and obscured by noise (a slow moving

trend).3 Learning about trends in cash flows is another possibility. Representative agent examples of this

are Adam & Marcet (2010) and Fuster, Hebert & Laibson (2011). A radically different idea is proposed in

Boswijk, Hommes & Manzan (2007) and Chiarella, He & Zwinkels (2009) which build expectations from

two very different types of heterogeneous agents. In these models the continuing use of trend following

beliefs leads to large swings in asset prices.4 Another possibility is that aggregate uncertainty is changing,

Bansal, Kiku, Shaliastovich & Yaron (forthcoming 2014), or risk aversion is changing either through a persis-

tent habit mechanism as in Campbell & Cochrane (1999) or directly through taste shocks as in Albuquerque,

Eichenbaum & Rebelo (2012).

This paper approaches this puzzle from the standpoint of risk perceptions. It is argued that agent ex-

pectations may be overly sensitive to changes in recent volatility. This risk perception can lead to very

large swings in asset prices.5 Further, the price dynamics themselves can make these short run forecast-

1 See Campbell & Shiller (1988), and then later Cochrane (2008), and Lettau & Ludvigson (2010).
2 See Cochrane (2011) for some of the connections between time series and cross sectional features.
3See Bansal & Yaron (2004).
4 This is common to many agent-based financial models. However, relatively few of them are calibrated or estimated to longer

range swings in asset prices. See several recent surveys including, Chiarella, Dieci & He (2009), Hommes & Wagener (2009), and Lux
(2009).

5 Another model that emphasizes learning about risk as well as return is Branch & Evans (2011).
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ing rules very appealing, and even quite rational for some agents. This has been demonstrated in several

agent-based asset pricing models.6 The objective of this paper is to take this result to the data to see if the

magnitudes line up with those from the simulations. How much are agents gaining or losing from the use

of short range forecasting rules, and do the results agree with those from the simulations? Finally, can the

empirical features help to calibrate the values in the agent-based models, and help us select between these

various competing, but very different, models for excess volatility.7

This study does not intend to push the limits of the literature on forecasting returns or volatility, but it

obviously has some overlap with this vast body of research.8 A critical paper in this area is Goyal & Welch

(2003) which questions the out of sample performance of many predictive forecasting rules. This paper

takes some of the spirit of their 2003 study by concentrating only on variance forecasting, and ignoring pre-

dictions of expected returns.9 In the time series sense, the order of magnitude of volatility predictability far

exceeds that for returns. There is a huge literature on volatility forecasting, but only a relatively small part

of it is concerned with whether volatility forecasting alone can lead to actual economic gains for traders.10

There is also some connection to recent work on realized volatility since all the volatility estimators will

be built from monthly variance estimates using daily data.11 Once the question of volatility forecasting is

opened, then one is also concerned with construction of dynamic portfolios. This paper remains relatively

simple and agnostic on this issue, following mostly the framework set out in Campbell & Viceira (2002),

but many more sophisticated approaches have been proposed.12 In summary, this paper does not push

the technology on building sophisticated forecasting models, but it does show important results for very

simple rules, and comparisons across these rules. It is often more interested in gaining insights into the

gradients in a simple forecasting space on which learning models will operate than the actual magnitudes

of the forecasts per se.

Section 1 details the empirical methodology, including the construction of a new longer horizon data set

6See LeBaron (2013a) for examples.
7 It is tempting to conjecture that an over use of short memory, high gain forecasts is all that you need to generate realistic asset

price dynamics. LeBaron (2013b) presents some initial evidence this is not the case, and that it is the interaction between forecasters
with different memories that is essential in getting the dynamics right.

8An extensive survey is Lettau & Ludvigson (2010).
9The debate on predictability is far from over. Recently, Pettenuzzo, Timmerman & Valkanov (2014 forthcoming) have shown that

imposing reasonable priors can yield significant out of sample forecasts. This follows on an earlier study, Campbell & Thomson (2008),
that suggested reasonable model restrictions might be important.

10See West, Edison & Cho (1993), Flemming, Kirby & Ostdiek (2001) for early examples, and more recently, Engle & Kelly (2011).
Tang & Whitelaw (2011) is also related in its methods for determining the relative contributions of return versus volatility forecasts.

11 Andersen, Bollerslev, Diebold & Labys (2003) and Barndorff-Nielsen & Shephard (2004) are two early examples. Barndorff-
Nielsen & Shephard (2010) is a recent survey, and Andersen, Bollerslev, Christoffersen & Diebold (2006) surveys many forms of
volatility forecasts. However, the technology used in this paper goes back to French, Schwert & Stambaugh (1987). A paper combining
realized volatility with variance/covariance portfolio construction is Flemming, Kirby & Ostdiek (2003).

12For examples see Cenesizoglu & Timmermann (2012), Johannes, Korteweg & Polson (2014), and Pettenuzzo & Ravazzolo (2014).
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using several existing series. Section 2 presents the results, and section 4 concludes.

2 Empirical methodology

The time series used in this study involve several readily available return series from U.S. equity and bond

markets. Several series are pasted together to increase the sample size. All series begin in March 1885 and

continue through December 2013. For the period from 1926 through 2013 the CRSP (Center for Research in

Securities Prices) series are used. Stock returns come from the value weighted series including dividends,

at both the daily and monthly frequency. The risk free series is the CRSP short range TBill returns series.

Monthly realized volatility estimates are estimated using daily data, and the methodology from French

et al. (1987). An estimate for each month is constructed as,

vt =
m

∑
i=1

r2
t,i + 2

m

∑
i=2

rt,irt,i−1 − (
1
T

T

∑
t=1

rt)
2 (1)

where rt,i is the logged daily return for month t, and day of the month i. The variance estimate is adjusted

for the small amount of correlation in daily return series, and uses the estimated sample mean from the

logged monthly returns, rt.

The period from 1885-1915 is trickier for data construction. The data sets from Schwert (1990) are used

here. They consist of value weighted indices (including dividends) measured at both the daily and monthly

frequencies. Monthly volatility estimates are constructed exactly as done for the CRSP series. The risk free

rate is set to the New York commercial paper series from the FRED historical archive. This monthly yield

series goes back to 1857. It is not a government bond series, but this series matches well the short end of

the term structure captured by the CRSP Tbill series. For all time periods inflation is estimated using the

CPI series from the Shiller monthly data set available at his website.13

This is then used to construct a family of smoothed volatility estimators. A forecast for volatility at time

t + 1 is constructed from constant and decreasing gain estimators applied to the monthly volatility series.

The constant gain estimate is given by,

Et(vt+1) = σ2
t,j = (1 − λj)σ

2
t−1,j + λjvt, (2)

where the parameter λj controls how far back into the past the estimator reaches, or the filter gain. The

13For information on Shiller’s series see Shiller (2000).
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functional form is similar to the forecast generated by a GARCH(1,1), and corresponds directly to the Risk-

metrics methods for estimating conditional variances used in various risk management systems. These

later estimators are based on the same simple exponential filter. Decreasing gain estimates follow,

σ2
t = +

t − 1
t

σ2
t−1 +

1
t

vt, (3)

which corresponds to an estimate of the mean volatility over the period [1, t].

These estimates are then used in a standard portfolio construction framework based on linearized Con-

stant Relative Risk Aversion (CRRA) preferences,14

αt,j =
E(re,t+1 − r f ,t+1) +

1
2 σ2

t,j

γσ2
t,j

, (4)

where αt,j is the fraction of wealth to invest in the risky asset for volatility rule j, and γ is the coefficient

of relatively risk aversion. The excess return of equity over the risk free, re,t+1 − r f ,t+1 is estimated un-

conditionally over the entire sample. All portfolio variability comes entirely from changes in conditional

variance forecasts. Portfolio returns are generated using the weights as

Rp,j,t+1 = αt,jRe,t+1 + (1 − αt,j)R f ,t+1 − πt+1 (5)

where πt+1 is the expost inflation over the period t, t + 1.

Various moments can be estimated for the portfolio returns. The most important of these is the certainty

equivalent return given by

(1 + Rce)
1−γ = E((1 + Rp)

1−γ), (6)

and

log(1 + Rce) = E(log(1 + Rp)), (7)

for γ = 1. This corresponds to the optimal portfolio choice of the agent and is a standard risk adjusted

measure for the utility value of the strategy. Many agent based models will use something close to this as a

rule fitness value, so it makes sense here as a reasonable representation of a standard agent-based adaptive

learning mechanism.

14See Campbell & Viceira (2002) for derivations.
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3 Empirical results

Results are presented using the sample of monthly returns, volatility, and risk free rates starting in March

1885 and ending in December 2013. For tables reporting trading strategy results the sample starts in March

1905 to give the strategy some initial data to start the learning rules. Table 1 presents summary statistics on

the monthly return series, both nominal and real. There are few surprising results. Real returns in stocks are

7.9 percent with a standard deviation of 18 percent. The real risk free TBill returns are 1.2 percent. Monthly

stock returns show the expected strong evidence for excess kurtosis. Figure 1 displays the entire monthly

return series graphed along with the monthly realized volatility. It is obvious that increases in monthly

volatility are reflected in large, usually persistent, increases in volatility.

The first set of certainty equivalent return estimates are given in table 2. These correspond to a maximum

α of 1 with no leverage allowed. The table gives results for several different levels of risk aversion, γ, and

5 different forecasting rules. All values are presented as annualized returns. “Decreasing” refers to the

decreasing gain rule. This is equivalent to estimating the volatility from the monthly mean over the first t

sets of months for use in the t + 1 portfolio. It serves as a useful benchmark rule for an agent not trying to

adaptively adjust their volatility estimate.15

The first row of the table corresponds to log utility (γ = 1) and displays little difference across any of

the forecasting rules. Risk aversion for these agents is so low that most of the agents are at the constraint

and hold 100 percent equity in their portfolios, yielding little difference across any of the strategies. The

row below this with values in parenthesis implements a bootstrap comparison of each of the constant gain

forecasts with the decreasing gain forecast. Pairs of the portfolio returns are drawn at random, but main-

taining the temporal dependence for each time pair. The value reports the fraction of bootstrap runs where

the constant gain forecast generates a larger certainty equivalent return. This value is important since this

is what one would be interested in an adaptive learning environment. It is essentially the probability of

switching to the constant gain forecasting rule from a rule using a very long memory forecast. For γ = 1

these values are all relatively small. Only the rule corresponding to a 1 year half life, shows any major

chance of change 0.34.

Once γ is increased to 2 the situation changes. Now certainty equivalent returns show larger values for

relatively short gains (less than 10 years). The estimated probability of getting a larger adjusted return for

a 1 year half life rule has increased to 0.87. A reasonable value for γ in terms of generating realistic asset

15In other experiments the unconditional mean of the volatility from the entire sample in used in place of the decreasing gain rule.
This gives an obvious out of sample advantage for this rule, but had little impact on the results.
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pricing dynamics is often in the range of 3 to 3.5.16 Now the improvement from moving to the one year

constant gain volatility forecast is much more dramatic. The certainty equivalent return increases from 2.7

percent to 3.9 percent in annual risk adjusted terms. The probability that the high gain forecast improves

on the constant gain rule is now 0.99. Certainty equivalent values fall as one moves from the 1 year rule

out to the 25 year rule, but several of the higher gain (shorter memory) rules still show large improvements

over the decreasing gain forecast. The results for γ = 5 repeat those for γ = 3. The potential utility draw of

large gain volatility forecasting rules remains, with over 96 percent of bootstrapped paired sample showing

a gain for the 1 year half life rule.

The certainty equivalent measure is probably the best measure to be checked in terms of rule usefulness,

but it is not the end of the story in terms of performance. Since these rules are estimated using variance

based forecasts it might be interesting to explore how much of the performance gain is coming from the

mean versus the variance of the dynamic portfolio. Table 3 compares the expected returns for the various

dynamic strategies. For γ = 1 and γ = 2 the table shows little difference which is what should be expected.

However, for γ = 3,5 there are increases in conditional means. They are really only large for the shortest

memory, 1 year half life rule. These need to be directly compared with the results for the portfolio standard

deviation in table 4. This table shows a reduction in variance for the more risk loving agents, but an increase

in variance for γ = 5. In this unusual case the gain in performance appears to be coming more from the

change in mean than variance, which is interesting given that this is a variance forecasting rule.

Table 5 presents the annualized Sharpe ratios for the various strategies. These again show improvements

in moving from the decreasing gain strategy to the 1 year half life strategy for all levels of γ > 1. In the case

of Sharpe ratios the strategies clearly begin to converge back to the decreasing gain levels for longer half

life rules. The column for the 25 year rule clearly shows this. Of course, Sharpe ratios are not really a very

good measure in any of these cases since the strategy is not designed to maximize this, but it reiterates the

general attractiveness of a high gain variance forecasting rule.

The previous tables have all limited α to be less than or equal to 1. In table 6 this is relaxed, and the upper

bound on αt is increased to 2. Results in the table show that the improvements in certainty equivalent

returns are not driven by the portfolio restriction. Large improvements in moving from decreasing to

constant gain learning are observed for all levels of risk aversion. For example, at γ = 3 the annualized

certainty equivalent return increases from 2.7 to 3.9 percent. Even for γ = 1 the improvement is still present,

16 See LeBaron (2012) for examples.
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and the probability of drawing a constant gain rule that improves on the decreasing gain rule is 0.86.17

Results have up to now supported the argument that agents would actively select a simple, but high

gain, active variance forecasting rule over constant gain, or other longer range forecasts. However, the

constant gain rule may be far from the optimal forecasting rule for volatility. A complete search over all

possible forecasts would be infeasible, but a very simple comparison is performed. A low order autore-

gressive (AR) model is fit to the volatility series, and it will be used to forecast future variances. Using the

Ljung-Box residual Q-test identifies an AR(3) model as in,

σ2
t = α +

3

∑
j=1

β jσ
2
t−j + β4rt−1.

This model is also augmented with the well known “leverage” term to account for volatility in month

t + 1 increasing when prices fall in month t.18 Also, a simple AR(1) model is used for comparison. All

parameters are estimated over the full sample, with the intention of giving them an unfair advantage over

the other models. The certainty equivalent values are presented for the 3 AR models in table 7. They show

some small improvements over the decreasing gain rule, but little difference across the 3 rules themselves.

These should be compared to results in 2. For γ = 3 the 1 year half life rule generated a certainty equivalent

return of 3.9 percent, which can be compared to a value of 3.5 percent for the AR(3) rules. For γ = 5 the same

comparison shows a certainty equivalent return of 2.6 percent in table 2 which is exactly the same as the

AR(3) with leverage in table 7. The initial evidence suggests that there will be no dramatic improvements

in certainty equivalent returns from moving to more sophisticated models.19

Table 8 compares the in sample mean squared errors for the various forecasts. There should be no

question about which forecast should win in this race.20 The models perform as expected with smallest

MSE’s going to the more complex and sophisticated AR models. However, the gains over the 1 year half

life forecast do not appear large in MSE improvement. The MSE falls from 0.22 to 0.19 in going to the AR

model with leverage. This repeats the result that the constant gain rules may be relatively simple and robust

rules which work well in terms of a dynamic trading strategy.

As a final casual assessment of the high gain forecasting rule its dynamics are compared to the level

17It is important to note that the results in table 6 are not relevant to agent-based models such as LeBaron (2012) and LeBaron (2013a)
since both of these papers impose a no leverage restriction.

18See Hasanhodzic & Lo (2011) and originally Christie (1982).
19Obviously, this is operating in the family of models which keep the expected excess return forecasts constant. Also, these are all

trivial models given what is possible in terms of forecasting. Recent examples of much more sophisticated models are in Johannes
et al. (2014) and (Pettenuzzo et al. 2014 forthcoming).

20Obviously, one should question the potential in sample bias in the AR MSE’s. A fair test would estimate these values out of
sample, but this increase in MSE would only strengthen the result that the performance comparison is very close across rules.
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of the VIX index. As is well known the VIX is an option based predictor of next month’s volatility on the

aggregate S&P500 index. Figure 2 compares the dynamics of the 1 year constant gain forecast to the VIX in

units of annual standard deviation. The general level of variability from lows of near 10, to highs around 30

are similar except for the unusual period in 2008 when the VIX get close to 60. Obviously, the constant gain

forecast is much smoother than the monthly observations of the VIX, but the general patterns are similar. If

overall perceptions of risk change by nearly a factor of 4 over time (16 for the variance), then it would seem

likely that this dynamics may play a big role in the changes in aggregate asset prices.

4 Summary

This paper tested a simple trading strategy for monthly equity returns. The objective is not so much to

demonstrate that this rule, which puts a heavy weight on recent volatility, works well, but to show that its

performance is at least comparable to rules using much longer memory. Empirically, the evidence suggests

that these simple high gain forecast rules do well when compared with lower gain, longer memory, rules.

Therefore, adaptive learning mechanisms used in real markets would end up with rules that are sensitive to

short term changes in volatility. This feature is a reliable component of heterogeneous gain learning models

as in LeBaron (2012). In these simulated models much of wealth has an extreme short range sensitivity in

volatility, and this sensitivity to endogenously generated changing variances plays a key role in generating

long range persistent changes in price/dividend ratios.

As a mechanism, weighting recent volatility too heavily seems to pass a common sense test that agents

would feel unusually scared about recent volatility in the market, and have a hard time in driving them-

selves to a longer range perspective for volatility estimation. It also contributes to potentially stabilizing

strategies, using price/dividend ratios, being weakened as the traders get scared about moving into an

undervalued, but volatile market. If the results had suggested a more balanced performance across all

the rules, or an advantage to the decreasing gain rules, then this agent-based mechanism would need to

be rethought. Given that the simple high gain rules did well, this type of volatility forecasting dynamics

should be considered along with the many other mechanisms that have been proposed to explain long

range swings of asset prices from their fundamental values.
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Table 1: Summary statistics

Series Mean Std. Skewness Kurtosis
VW index 0.105 0.179 0.275 11.7
VW index (real) 0.079 0.181 0.332 11.3
TBill 0.038 0.008 0.842 5.0
TBill (real) 0.012 0.033 −0.063 11.7

Summary statistics reported in annualized return units. Monthly CRSP VW returns + spliced with Schwert series from
March 1885 through December 2013.
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Table 2: Certainty equivalent

Gain: half life years
CRRA Decreasing 1 5 10 25
γ = 1 0.060 0.059 0.060 0.060 0.060

(0.344) (0.000) (0.000) (0.000)
γ = 2 0.042 0.048 0.044 0.041 0.040

(0.868) (0.638) (0.370) (0.216)
γ = 3 0.027 0.039 0.033 0.030 0.028

(0.988) (0.922) (0.820) (0.664)
γ = 5 0.018 0.026 0.020 0.018 0.017

(0.968) (0.814) (0.640) (0.456)

Certainty equivalent returns (annualized). Estimated 1905-2013. Volatility forecasting rules use gain levels with given
half lives measured in years. Decreasing corresponds to a decreasing gain forecast. Numbers in parenthesis are boot-
strap estimates for the probability of the given rule generating a higher certainty equivalent than the decreasing gain
rule.
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Table 3: Annualized returns

Gain: half life years
CRRA Decreasing 1 5 10 25
γ = 1 0.077 0.075 0.077 0.077 0.077
γ = 2 0.076 0.071 0.069 0.068 0.068
γ = 3 0.057 0.064 0.060 0.058 0.057
γ = 5 0.037 0.048 0.040 0.038 0.038

Table 4: Annualized standard deviation

Gain: half life years
CRRA Decreasing 1 5 10 25
γ = 1 0.184 0.178 0.184 0.184 0.184
γ = 2 0.182 0.149 0.157 0.161 0.165
γ = 3 0.142 0.129 0.133 0.136 0.138
γ = 5 0.087 0.093 0.088 0.088 0.090

Table 5: Annualized Sharpe ratios

Gain: half life years
CRRA Decreasing 1 5 10 25
γ = 1 0.375 0.380 0.375 0.375 0.375
γ = 2 0.374 0.426 0.390 0.373 0.364
γ = 3 0.349 0.440 0.393 0.373 0.360
γ = 5 0.333 0.432 0.366 0.347 0.335
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Table 6: Certainty equivalent (max = 2)

Gain: half life years
CRRA Decreasing 1 5 10 25
γ = 1 0.078 0.091 0.082 0.077 0.074

(0.860) (0.664) (0.428) (0.252)
γ = 2 0.037 0.060 0.046 0.041 0.037

(0.986) (0.847) (0.693) (0.498)
γ = 3 0.027 0.039 0.031 0.028 0.026

(0.952) (0.793) (0.631) (0.442)
γ = 5 0.018 0.025 0.020 0.018 0.017

(0.940) (0.790) (0.598) (0.413)
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Table 7: Autoregressive comparison

Model
CRRA Decreasing gain AR(1) AR(3) AR(3)+Leverage
γ = 1 0.060 0.059 0.059 0.060
γ = 2 0.042 0.043 0.046 0.046
γ = 3 0.027 0.033 0.035 0.036
γ = 5 0.018 0.022 0.023 0.026

Table 8: MSE forecasts x 104

Model
Decreasing gain AR(1) AR(3) AR(3)+Leverage

0.261 0.197 0.192 0.190
Gain: half life years

Decreasing gain 1 5 10
0.261 0.222 0.249 0.258
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Figure 1: Returns and Volatility
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Figure 2: Constant Gain Forecast and VIX
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