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Abstract

This paper combines techniques drawn from the literature on evolutionary optimization algorithms
along with bootstrap based statistical tests. Bootstrapping is used as a general framework for estimating
objectives out of sample by redrawing subsets from a training sample. Evolution is used to search the
large number of potential network architectures. The combination of these two methods creates a network
estimation and selection procedure which finds parsimonious network structures which generalize well.
The bootstrap methodology also allows for objective functions other than usual least squares, since it
can estimate the in sample bias for any function. Examples are given for forecasting chaotic time series
contaminated with noise.
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1 Introduction

Nonlinear time series forecasting is still a difficult problem with many unanswered questions. The researcher is
faced with a huge array of possible techniques as well as control parameters which are difficult to determine.1

This paper proposes to address this problem using two recent procedures, evolutionary search techniques,
and bootstrap cross-validation. They will be used in a simple example using artificial neural networks as
function approximators for a chaotic time series with additive noise.

Evolutionary methods have proved to be a useful tool in network construction and estimation.2 Also,
Efron’s bootstrap has been shown to be useful for network diagnostics, and forecast improvement.3 Evolution
will be used here to aid in searching the vast space of possible network structures while the bootstrap is used
to estimate off training set, or out of sample, forecast error. The combination of these two procedures has
not yet been explored.

A good question might be why two computationally intensive procedures need to be combined into an
even more burdensome process. The basic reason put forth here is that both of these are necessary to
deliver estimated function approximations able to maximize arbitrary objective functions for unknown noise
distributions. Evolutionary search is used to find lean networks with many connection lines cut. For different
network structures this search far exceeds what could be reasonably done enumeratively. Bootstrapping
allows the general estimation of in sample bias for arbitrary model structures, noise distributions, and
objective functions. This makes it a powerful tool in the search for reliable approximations. This power
comes with several costs. First, it is computationally burdensome, and for some problems might quickly
outstrip available computer resources. Second, the theory for bootstrap cross-validation is still not well
understood, and the procedures used have no asymptotic justification.

The second section introduces both the bootstrap and evolutionary network selection systems that will
be used in the later applications. The third section applies the methods to sets of simulated time series.
Tests are peformed to check the reliability of this model identification system, and comparisons with some
other more traditional identification systems are performed. Finally, in the last part of the third section some
comparisons are made showing where the bootstrap/evolutionary method may have significant advantages.
The final section summarizes and concludes.

2 Model Selection and Estimation

2.1 Bootstrap Cross-validation

In the model selection procedure candidate networks will be evaluated according to their in sample objective
functions adjusted by an estimate of the in sample bias. This estimate is obtained using the bootstrap
(Efron 1979). Specifically, a method called the 0.632 bootstrap is used. Details on this can be found in
(Efron 1983) and (Efron & Tibshirani 1993). The basic idea is to try and estimate the in sample bias by
drawing a new sample from the original sample with replacement, and using this as a training set with the
original sample taking the role of a “clean” test set. This estimate of in sample bias will clearly underestimate
the true bias because of the large overlap between the original sample and the bootstrapped training samples.
The 0.632 bootstrap attempts to provide some correction for this sampling overlap.

1A very comprehensive survey on the area of nonlinear forecasting is (Weigend & Gershenfeld 1993).
2See examples in (Balakrishnan & Honavar 1995), (Mitchell 1996), and (Yao 1996).
3For examples of bootstrap applications to neural networks see (Breiman 1994), (Connor 1993), (LeBaron & Weigend 1994),

(Paaß 1993), and (Tibshirani 1994).
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This is a quick overview of this method. Squared error is used in the following examples, but other fitness
measures could be used as well. Define the squared forecast error for an approximating function, f , and
estimated parameters, β̂, as,

ê2(n) =
1
n

n∑

i=1

(yi − f(xi, β̂))2, (1)

where β̂ is estimated on the entire sample of length, n. A bias adjustment, ωn, is equal to the difference
between the in sample estimate, and the true expectation over the population,

ωn = E((Y − f(X, β̂))2) − E(ê2(n)). (2)

An estimate of ωn would allow estimation of true off training set error, and selection of models based on
that error. The bootstrap gives one possibility for estimating ωn.

Begin the bootstrap procedure by drawing B samples of length n from the original sample indexed by b.
Define Kb as the set of points in bootstrap b. Define ε̂(0) as the estimated squared error for points not in
the training set. This is defined for B bootstrap replications as,

ε̂(0) =
1
B

B∑

b=1

1
#(i 6∈ Kb)

∑

i 6∈K

(yi − f(xi, β
(Kb)))2, (3)

where Kb represents the set of points in each bootstrap draw. βKb is estimated on Kb, and the error is
estimated over points not in Kb.

The 0.632 bootstrap estimates the bias adjustment to this in sample error as4

ω̂(0.632) = 0.632(ε̂(0) − ê2). (4)

The adjusted error estimate is
ê(0.632) = ê2 + ω̂(0.632) (5)

ê(0.632) = 0.368ê2 + 0.632ε̂(0) (6)

This gives an estimate that is a weighted average of the in sample error, and the “out of sample” error from
ε̂(0).5

A second technique, which is also used, is monte-carlo cross-validation. This is standard K-fold cross-
validation where the subsets are drawn at random. The estimated error is again the mean over a set of
montecarlo simulations.

ε̂MC =
1
B

B∑

b=1

1
#(i 6∈ Kb)

∑

i 6∈Kb

(yi − f(xi, β
(Kb)))2. (7)

However, in this case the sets Kb, are drawn without replacement from the underlying distribution. Further
descriptions, and some examples of performance can be found in (Shao 1993).

4To ease in notation, the n has been dropped from ê2.
5The weighting, 0.632, is derived from the probability that a given point is actually in a given bootstrap draw, 1 − (1 −

(1/n))n ≈ 1 − e−1 = 0.632. The 0.632 bootstrap approximates the “distance” between the bootstrap samples and the original
series, and the previously mentioned probability is the crucial adjustment factor. Details are given in (Efron 1983).
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2.2 Network Evolution

Approximating functions f() will be standard feedforward, single hidden layer, sigmoidal neural networks.
These can be written as,

f(x, β) = θ0 +
h∑

j=1

θjG(xγj), (8)

G(a) =
1

1 + e−a
, (9)

where θ and γ are both in the parameter vector β. Each γj is a vector of parameters that is used to linearly
weight the input vector, x. Hill climbing is used to estimate network weights, and the network architecture
is determined through an evolutionary procedure.6 There is a large and growing literature on evolving
neural networks.7.8 This paper uses a very simple evolutionary structure. Obviously, improvements may be
obtained using more sophisticated methods in the future.

A population of network architectures is given by (sj , w
0
j ;wj) where j is the population index, and sj

is a vector of binary variables representing each connection in a network. Let L be the number of nonzero
entries in sj . w0

j is a real vector of length L that gives the starting values used in hill climbing, and wj is
a real vector of length L representing the final “optimized” network weights. Figure one demonstrates how
the binary coding is mapped into network architectures. Each element of the vecture sj corresponds to a
connection in the network. Dashed lines refer to connections that are not active.

6See (Hart & Belew 1996) for another example of a hybrid technique similar to this one.
7Useful surveys on this field can be found in (Balakrishnan & Honavar 1995) and (Yao 1996).
8Related work can be found in the literature on pruning. A few examples of this are (Cun, Denker & Solla 1990), (Finnoff,

Hergert & Zimmermann 1993), and (Hassibi & Storck 1993).
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sj,1 sj,2 sj,3 sj,4 sj,5 sj,6

sj,7 sj,8 sj,9

sj = (1, 1, 0, 0, 0, 0, 1, 0, 0)

Figure 1: Single hidden unit, 2 inputs

New networks are evolved using tournament selection and two mutation operators, micro and macro
mutation. A parent network is selected by choosing 5 networks at random (from a population of 50), and
then using the fittest of these. Micro mutation involves looking at the connections between the hidden units
and inputs. A hidden unit is chosen at random, and then one of the bits controlling the inputs to that unit
is chosen. This bit is then flipped from 0 to 1, or 1 to 0. Macro mutation involves choosing a hidden unit. Its
connection to the output is then flipped from 0 to 1, or 1 to 0. If it is activated, then each of its input lines
are activated with probability, 0.5. Both types of mutations occur with probability 0.4. The remaining 20
percent of the time, the network structure is simply copied to create a new network with the same structure,
but new starting values will be chosen for hill climbing. Once the child’s architecture is decided through
mutation, and the starting values are drawn, its final weights, wj , are set using a hill climbing algorithm.9

Bias estimates proceed according to the bootstrap or cross-validation methods described earlier. In a
world with infinite computing time available, the procedure would perform a large number of bootstrap
iterations on all new rules entering the population. Unfortunately, this is infeasible, so bootstrap iterations

9For squared error estimates a Levenberg-Marquardt method is used, and for other objectives, a simplex method is used.
The former uses analytic derivatives.
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are built up as the population evolves. A new bootstrap iteration is performed for all members of the
population at each generation. This means that the bias estimates are continuously being updated over
time, and the stochastic fitness values will be changing. For each bootstrap bias estimate, a new subsample,
Kb is drawn, and β is estimated through hill climbing using the stored network starting values, w0

j .10

New networks have an initial startup number of bootstrap simulations of 5. This prevents many simply
lucky, but not very good, networks from invading the population. Also, new networks must be better than
the parents they replace.11 The population size is set to 50, and 15 potential new networks are created
at each generation. The selection method has the property of slowing down evolution as the population
improves, allowing it to concentrate on getting good bootstrap bias estimates for the current set of networks
since networks will spend more time in the population. New networks are started at randomly drawn initial
weights.12 These starting values are stored in w0

j so they can be used again for each bootstrap sample. The
final estimated weights are stored in wj .

A summary of the evolution bootstrap procedure is given in the following list:

1. “Select” 15 candidate networks to be parents for the next generation.

2. Mutate each of these according to macro, micro, or copy operators.

3. Choose new random starting values for each new child.

4. Hill climb each of these on the entire training set to get final weights, ω.

5. Perform 5 bootstrap bias estimates on randomly drawn subsamples of the data for each new network
to estimate its fitness.

6. Merge the parent and child populations, and keep only the 50 best networks from both.

7. For each network in the population, perform another bootstrap bias estimate, b, and get a new estimate
for ê(0). Use this to update the adjusted fitness.

8. Go to 1 until last generation.

A serious problem for sigmoidal neural networks is that of local minima. The possibility of having
candidate solutions that have stopped at a local, and not a global minimum adds a troubling aspect of
imprecision. An attempt is made to avoid these local minimum solutions in the population. New networks
can be direct copies of old network structures subject only to a change in the startup vector, w0. This new
candidate network is simply a retry of an old network structure at new starting weights. If this network out
performs its parent in the population in terms of in sample objectives, then it shows that the parent was at
a local minimum in terms of that objective. When this happens this child directly replaces the parent. In
this way the system strives for networks that, subject to their architecture, minimize in sample objectives.
Architecture decisions are made according to the bias adjustments previously described. This is in contrast
to techniques such as “stop training” which may often stop at a local minimum on the training or cross
validation sample.13

10The population based search is effectively faced with a very computationally costly objective function which can be better
estimated with additional iterations. The population allocates the scarce computer resources to the most promising solutions.

11This is similar to µ + λ selection described in (Bäck 1996), and the election operator of (Arifovic 1994).
12The weights are drawn uniformly from [−1/m, 1/m] where m corresponds to the number of inputs.
13The concern for avoiding local minimum is approached in another bootstrapping context by (Tibshirani & Knight 1995).

5



3 Hénon Map Time Series Forecasting

3.1 The Hénon Map

The Hénon map is one of the simpler chaotic maps, and provides a useful testing framework for the forecasting
methods proposed in this paper.14 It is given by the following set of difference equations,

xt+1 = 1 − 1.4x2
t + yt (10)

yt+1 = 0.3xt.

Here, attention will be focused on forecasting xt alone from lagged x values. The Takens embedding theorem,
(Takens 1983), states that if the underlying system is a diffeomorphism, then an embedding, or vector of
lags (xt, . . . , xt−m), for large enough m, can completely characterize xt+1. More specifically, there exists a
function g() such that

xt+1 = g(xt, . . . , xt−m) (11)

Define a noise contaminated series as,
zt = xt + εt, (12)

where εt is independent, identically distributed noise. Forecasts will be made on future values of zt using
lagged values of the “clean” series, xt. In other words the prediction problem is to approximate f() in the
following nonlinear regression problem,

zt+k = f(xt, . . . , xt−m) + εk. (13)

This problem differs slightly from the more traditional approaches of adding noise to dynamical systems. In
some cases the laws of motion are made stochastic by introducing noise into the dynamical system itself. In
other cases, “read out” noise is added to the underlying series and this series is considered the time series
of interest. In this example this would imply that lagged values of zt would be used in the above regression.
The method used here provides a better benchmark test for several reasons. First, the best one can do in
terms in terms of forecasting is clear. If f() were known, or approximated perfectly, then the the distribution
of εt would characterize the forecast error. Second, the use of noisy explanatory variables introduces the
difficult problem of errors in variables.1516

3.2 Mean Squared Error Prediction

This section presents experiments using simulated Hénon data. Predictions are made 2 periods into the
future so the following function is being estimated,

zt+2 = f(xt, . . . , xt−m;β) + εt+2. (14)

Gaussian noise is added to the series with variance equal to 1/2 the variance of xt. All estimation and
validation takes place in a sample of length 100 which is taken after the system has been run for 800 time

14For other results using ANN’s and the Hénon map see (Gençay 1994). Also, papers and references to other work on the
large area of forecasting chaotic time series can be found in (Eubank & Casdagli 1991) and (Weigend & Gershenfeld 1993).

15Much is known about this problem for the case of linear regression, (Judge, Griffiths, Hill & Lee 1980). Work on the
nonlinear case is only just beginning (Weigend, Zimmermann & Neuneier 1996).

16It is assumed that the network can do a reasonable job at approximating the chaotic series. This is not unreasonable given
the approximation theory that has been proved for several types of networks structures. Much of this theory is surveyed in
(Kuan & White 1994).
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steps to make sure that it has settled into a stationary attractor. The initial value of y is set to zero, and the
intial value of x is chosen uniformly on (0, 1). The added noise for this set of experiments will be Gausian.
Finally, a test sample of length 1000 is used to report out of sample prediction. This sample is not used in
the estimation or model selection procedures. These parameters have been chosen with several constraints
in mind. First the series should be able to be approximated to within machine precision in the no noise case.
This shows that in the case of clean data the search and estimation procedure can find good approximators
for g(). The second constraint was that overfitting must be a relevant problem. For the simple Hénon case,
as the sample size gets long most of the methods used here get arbitrarily close to g(). The problem of
overfitting appears in short noisy series, where the definition of short and noisy depends on the underlying
complexity of the system.

The network takes 5 lags of xt from the map as inputs along with a constant set to 1, or bias term which
gives 6 possible inputs to each hidden unit. There is also a constant term for the entire network. Networks
are limited to 6 hidden units as a maximum. This was found not to be a binding constraint for most cases.

The function, f , and parameter vector, β are estimated using the evolutionary procedure outlined above,
and a mean squared error objective, MSE,

ê2(n) =
1
n

n∑

t=1

(zt+2 − f(xt, . . . , xt−m;β))2. (15)

Various adjustments will be added to this objective in attempting to correct for overfitting biases. The
two previously mentioned adjustments, the bootstrap, and monte-carlo cross validation adjustments will be
augmented with two more traditional penalty terms, the Schwarz information criterion (Schwarz 1978), or
BIC, and the Akaike information criterion, or AIC (Akaike 1973). BIC uses the following objective function,

log(ê2(n)) − log n

n
(p), (16)

and AIC uses,

log(ê2(n)) − 2
n

(p). (17)

In each case p is the number of parameters, or weights, used in the given network structure.
Table 1 presents summary statistics over sets of 30 runs of the Hénon map for each of these different

methods. The first line, labeled none, refers to no bias adjustment. The first two columns show the MSE in
the training sample and the test sample. The increase from 0.12 to 0.55 shows a good example of overfitting.
The variance of the noise of 0.25 is the minimum forecast MSE that is possible with perfect forecasts. It
is clear that this case does poorly relative to this benchmark. The table also shows the standard error for
the test MSE, σ(MSE Test). It also shows the mean of the ratio of the adjusted training MSE divided by
the test MSE across the 30 runs. This is an indication of how well the adjusted MSE did in predicting
the true test sample objective. In the case of no adjustment this is just the mean ratio of training to test
sample forecast variances. The small value of 0.25 repeats the results of the first two columns. The last two
columns describe the types of networks fit. The first, labeled hidden, shows the mean number of hidden units
(out of a maximum of 6) that were used, and the second, labeled connection fraction, shows the fraction of
connections in the network that are activated. Both these numbers are highest for the zero adjustment case,
emphasizing that bias adjustment has an important impact on network parsimony.

The next two rows in the table, labeled Bootstrap, and MC Cross Val., refer to the two adjustment
methods described in the second section. In both cases we see a dramatic reduction in overfitting, which is
revealed in a significant reduction in out of sample MSE. Both methods do moderately well at forecasting the
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Table 1: Mean Squared Error Objective
Adjustment MSE MSE σ(MSE Test) Adjusted Train MSE/ Hidden Connection

Train Test Test MSE Units Fraction
None 0.1287 0.5478 0.0222 0.2452 6.000 0.6992
Bootstrap 0.2375 0.3443 0.0087 0.9463 3.682 0.3326
MC Cross Val. 0.2248 0.3515 0.0101 0.9073 3.732 0.3372
BIC 0.2373 0.3495 0.0089 1.1753 3.067 0.2736
AIC 0.2045 0.4190 0.0181 0.7388 4.166 0.4302
True Cross Val. 0.2413 0.3098 0.0056 0.9697 3.934 0.3752
Mean squared error estimates for length 100 training, and length 1000 test set experiments. Numbers are
means over 30 different runs. σ is the standard error of the mean. Hidden is the mean number of hidden
units, and connection is the fraction of connections set. The best possible forecast given the simulated noise
would give a MSE of 0.25.

out of sample MSE with Adjusted Train/Test ratios of 0.95 and 0.91, respectively. They also fit much leaner
networks using only slightly more than half the available hidden units, and about a third of the possible
connections.

The next two rows present results for the two complexity penalties, BIC, and AIC. In the case of BIC,
most of the results indicate that it would be difficult to distinguish between the two cross validation methods.
It tends to over estimate out of sample error, but since BIC is not really designed for this, this number should
not be taken too seriously. Finally, it does appear to fit even leaner networks with a connection fraction of
0.27. AIC performs very badly on this problem. It appears to be significantly worse than either BIC, or the
two cross validation methods, but better than no adjustment.

To further test the performance of the evolutionary procedure without the bootstrap, a special cross
validation test is performed. In this case a second cross validation series is provided for model specification
testing. Specifically, an extra 1000 point series is used only for model cross validation. Networks are still
trained on the 100 length training set, but their fitness in the network population is evaluated on this special
cross validation set. This allows the network to maintain all the problems of fitting a network on the short
noisy data, but architecture selection problems should be much better solved given this true cross validation
series. Results for this test are given in the row labeled, True Cross Val., in table 1. It is clear that this run
produces the lowest test MSE, and the best prediction of test error, with a training/test ratio of 0.97. This
should be expected in this best case benchmark. Interestingly, it does not give the leanest networks, with a
connection fraction of 0.38.

3.3 Network Pruning

This section explores the value added of network pruning on the performance of the fitted time series
models. The goal is to compare the evolutionary procedures of the previous section with more commonly
used techniques. The time series will be approximated with a fully connected network. Network architecture
is varied only over the number of hidden units. Also, each network architecture will be started at many
different random starting values. For each of the different complexity penalty methods 100 networks are
estimated for 1 through 6 hidden units, for a total of 600 networks. Each network is started at different
random starting weights.

Comparisons between table 2 and table 1 show large improvements from using the evolutionaty pruning
algorithm. For example, under the BIC penalty, training set MSE moves from 0.51 to 0.35 when pruning is
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Table 2: Fully Connectected Network Comparisons
Adjustment MSE MSE σ(MSE Out) Adjusted Train MSE/ Hidden Connection

Train Test Test MSE Units Fraction
None 0.1627 0.6009 0.0421 0.3014 5.734 0.9566
BIC 0.3165 0.5105 0.0147 1.3981 2.433 0.4194
AIC 0.1796 0.5107 0.0330 0.7888 5.033 0.8426
True Cross Val. 0.2222 0.4085 0.0101 0.9809 5.000 0.8372
Mean squared error estimates for length 100 training, and length 1000 test set experiments. Numbers are
means over 30 different runs. σ is the standard error of the mean. Hidden is the mean number of hidden
units, and connection is the fraction of connections set. The best possible forecast given the simulated noise
would give a MSE of 0.25.

allowed. Even in the case with the true cross validation objective the test set MSE goes from 0.41 to 0.31.
All these improvements appear to be significant given the estimated standard errors.

It is clear that restricting the space to fully connected networks drives the system to less parsimonious
network structures. In the case of BIC the mean fraction of connections over the 30 runs changes from 0.42
to 0.27 when pruning is allowed. Interestingly, in some cases pruning allows the system to fit a model with
more hidden units since in the fully connected case each unit brings with it a full set of input connections.
For example, in the BIC case the mean number of hidden units rises from 2.4 to 3.1 when pruning is allowed.
Since this relation does not hold across all the different methods, it is not clear how often this will be the
case, and how significant this difference is.

These results clearly show that all of the proposed newer estimation methods in table 1 show significant
improvements over more traditional methods with fully connected networks.17 The comparisons were not
able to include bootstrap methods due to the computational burden with that many network structures
evaluated in parallel.

3.4 Objective functions

It appears that the bootstrap performs well in terms of avoiding overfitting, but in the experiments shown
so far it is a computationally intensive equivalent of the BIC criteria which is quite close in most of the
comparisons. To see how they may differ two changes are implemented that take advantage of the limitations
of the BIC. First, the error distribution is changed from Gaussian to a skewed three point distribution, and
second, a non MSE objective will be used. The nongaussian noise means that the likelihood approximations
for the BIC, and AIC penalties will be farther off target. The objective function change makes both penalty
parameters unusable for direct estimation. Estimation will be carried out in the BIC and AIC cases for a
MSE error objective, and this will be used to approximate the other objective function.18 Criteria beyond
squared error loss functions do not allow the use of these penalty functions. Both of these cases do not
bother the basic assumptions behind the bootstrap, and it should still be valid.

The first of these objectives is obtained by altering the noise distribution. The sample size is dropped to
50 in the training set, and the noise is changed from Gaussian, to a 3 point distribution, {−1, 0, 0.5} with

17These results are conditional the approach used for fully connected network selection. Other approaches might yield different
results.

18This is not an unreasonable thing to do since the MSE estimation should give a consistent estimate of the conditional mean,
which in the situation considered will easily transform into the control based objective. It is not clear what will happen in small
samples, or whether the BIC can properly penalize networks for this task.
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probabilities, (1/6, 1/2, 1/3). This gives a mean zero, negatively skewed noise with zero mean, and variance
equal to that in the previous tests, 0.25.

The second difference in these final tests is that the objective function will be changed. MSE minimization
may be useful in many cases, but there may be instances in which other objectives are desired. The example
used here is motivated by finance, with connections to other control problems. Consider the time series
above given by zt. Assume the controller at time t is interested in finding a control variable, bt, in the set
{−1,+1} which maximizes,

E(btzt+1), (18)

where bt is formed based on time t information. This corresponds very closely to trading rule situations where
bt would indicate a buy (+1) or sell(−1) signal. This objective function may appear close to a sign prediction
objective, but it is not exactly the same.19 The expectation is approximated by the sample average,

Ln =
1
n

n∑

t=1

(btzt+1), (19)

where bt is found by taking the output of the network and mapping it into {−1, 1} depending on the sign
of the network output. This is equivalent to putting an signum function on the output of the previously
described networks. This more complicated objective function requires a more general optimization system.
Gradients are badly behaved in finite samples, so a simplex method is used.20 Shifting to this less powerful
optimization algorithm is a severe handicap for using this objective function. Future modifications may
involve a smooth function in the sign mapping which would allow the use of derivative based hill climbing.21

Results for various approaches to this problem are compared in table 3. The sign objective Ln is given
in columns 3 and 4 for both the training sample of length 50, and the test sample of length 1000, and the
last column gives the standard deviation across the 30 runs for the sign test in the test sample. The first
three lines of the table show results for methods directly using the Ln objective function. This includes
no adjustment (none), the bootstrap, and the true cross validation case, where a separate series of length
1000 is drawn for model selection. In all three of these Ln is used for both weight estimation and model
selection. The first feature that should be noted is the increase in MSE from table 1. This is due to the
smaller sample size as well as the fact that MSE is not the objective function. Columns 4 and 5 report the in
sample and out of sample sign objective. It is clear that in the case of no adjustment overfitting is present.
The sign objective here of 0.49 is less than the bootstrap, and true cross validation values of 0.55, and 0.64,
respectively. These are still far from the theoretical maximum for this objective which should be equal to
the absolute value of the series, xt.22 This was estimated to be 0.77 for a representative sample of length
1000.

The next 3 rows examine networks that were estimated on MSE objectives, and then used to generate
bt controls to get Ln. In these cases, true objectives, and estimation objectives differ. Because MSE is used
in estimation the BIC penalty can again be used as a penalty. Row 4, labeled Bootstrap ê2, reports results
for a bootstrap bias estimator based on MSE estimation which is the same one used in table 1. This row

19See (Cumby & Modest 1987) for some examples.
20See (Press, Flannery, Teukolsky & Vetterling 1986) for information on the simplex method. The bad behavior of the

gradients is due to the fact that changing a parameter by an arbitrarily small amount may flip the sign of a bt, changing the
objective function by a relatively large amount.

21Actually, in all cases the network is trained for 50 iterations using the Levenberg-Marquardt algorithm and a squared error
objective, and then it shifts to the simplex algorithm.

22E(btzt+1) = E(btxt+1 + btεt+1), where the second term is zero, so the maximum corresponds to the absolute value of xt

given that bt predicts the sign perfectly.
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Table 3: Sign Objective
Adjustment MSE MSE Sign Objective Sign Objective σ(Sign Obj)

In Out In Out
None 0.1633 0.8289 0.7596 0.4859 0.0177
Bootstrap 0.2464 0.5685 0.7064 0.5544 0.0127
True Cross Val. 0.2788 0.4396 0.6913 0.6373 0.0044
Bootstrap ê2 0.2678 0.4820 0.6118 0.5158 0.0179
BIC 0.2752 0.8159 0.5988 0.4484 0.0228
True Cross Val. ê2 0.2179 0.3468 0.6589 0.6240 0.0070

Sign objective functions, Ln, for length 50 training and length 1000 test set experiments. Sign objective is the
mean value of Ln over the 30 runs, for both the training and test periods as indicated. The maximum value
for this corresponds to the absolute value of the time series which was estimated at 0.77 for a representative
run of length 1000.

provides an interesting contrast to the first row of the table. The MSE bootstrap finds a network giving a
lower MSE, and a lower sign objective. In other words, it is doing better on the MSE criterion, and worse
on the sign criterion. This makes sense since it is estimated on the MSE. The next row, labeled BIC, shows
the BIC penalty performing worse than the bootstrap, and much worse than the sign objective bootstrap
of the first row. The fact that the BIC performs worse than the MSE bootstrap indicates the effect of the
error distribution since both are using the same objective function. The experiment is the same as that in
table 1 except for the unusual error distribution, and smaller training set. The final row shows the true
cross validation example for the MSE objective. As should be expected, this is the best performer. What is
interesting is that it doesn’t perform too much worse in terms of the out of sample sign objective than the
true cross validation case for the sign predictor. This demonstrates that when the model selection problem
is close to being solved, the MSE objective can get very close to the conditional expectation, and therefore
it generates good sign forecasts.

The next two tables perform bilateral comparisons on some of the results from the previous experiments.
In table 4 the means for the out of sample sign objectives are compared using a simple t-test for the differences
in means. Under the null hypothesis of equal means, these numbers are distributed N(0, 1).23 It is clear from
the table that the mean objective from the bootstrap is larger than that from BIC with a value of 4.06. Also,
the sign objective based bootstrap is marginally better than the squared error bootstrap with a value of 1.76
which is significant at the 10% confidence level. Finally, the table indicates that the cross validation method
using the large extra hold out sample generates larger objectives than both of the bootstrap methods.24

Comparisons of experiments using the means from simulation runs can be adversely effected by a few
outliers. For this reason, a more robust distribution test is also implemented. Table 5 uses a Mann-Whitney-
Wilcoxon test to compare the sign objective distributions over the different cases (Hogg & Craig 1978). This
is a nonparametric test for the equality between two independent distributions. The test statistic will have a
distribution that is asymptotically normal with zero mean and unit variance under the null hypothesis that
the distributions are the same. In table 5 it is applied to the sign objective for the various methods using
the distribution across the 30 runs performed on each in a series of bilateral comparisons. In the first row
the value of 1.47 indicates that the two bootstrap methods are indistinguishable according to this test, while
the bootstrap is still preferred to the BIC, but not as good as the true cross validation. Results similar to

23The values presented are µ1−µ2√
σ2
1+σ2

2

, where 1 and 2 refer to the two comparison distributions.

24The minus sign indicates that the column method is larger.
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Table 4: Mean Comparison: Sign Objectives
Base comparison Bootstrap ê2 BIC True Cross Val.
Bootstrap 1.76 4.06 -4.80
Bootstrap ê2 2.33 -5.64

T-tests for equality of means between different procedures. Values compare the row and column labeled
tests. The test statistic is N(0,1) under the null hypothesis of mean equality. 10 and 5 percent critical values
are 1.64 and 1.96 respectively for a two tailed test. A negative value indicates that the test labeled on the
column is larger(better).

those in table 4 are shown in the second row. The MSE bootstrap still out performs the BIC using this more
robust test.

Table 5: Distribution Comparisons: Sign Objectives
Base comparison Bootstrap ê2 BIC True Cross Val.
Bootstrap 1.47 3.37 -4.19
Bootstrap ê2 2.05 -4.95

Mann-Witney-Wilcoxon test for distribution equality. Values compare the row and column labeled tests.
The test statistic is N(0,1) under the null hypothesis of distribution equality. 10 and 5 percent critical values
are 1.64 and 1.96 respectively for a two tailed test. A negative value indicates that the test labeled on the
column is larger(beter).

The results in this section suggest that there are possible advantages to using objectives other than MSE
when they are desired, and that overfitting can be avoided in these cases using the bootstrap. The sign
based bootstrap improved on the BIC, and it was marginally better than the MSE based bootstrap. The
true cross validation continued to be the best performer which should be expected. It is displayed only as a
comparison case to show what would happen in a situation where the model selection problem was close to
being solved.

4 Conclusions and future issues

The examples in this paper have demonstrated that combining evolutionary search methods with bootstrap
cross-validation is an effective tool in developing parsimonious network approximations that generalize well.
Experiments showed that for certain sample sizes, methods compared well with more traditional procedures
designed to penalize overly complex network structures. It was also shown that these methods have power to
find robust networks subject to objectives which differ from traditional MSE and likelihood based objectives.

Several questions remain about the bootstrap/evolutionary dynamics. The most obvious is that no system
trying to use training data for model selection can ever be completely free of overfitting problems. The data
is “tainted” after the first generation and there might be a tendency to overfit as generations proceed. This
would be a somewhat subtle type of overfitting since it would imply that networks exist which both are
overfitting the sample and also all possible randomly drawn subsamples. This doesn’t appear to have been
a problem in the experiments performed here, but it is an issue that anyone using this method should be
cautious about.

A second question concerns the actual dynamics of the bootstrap and the accuracy of the estimated bias
terms. Since bias is estimated as evolution procedes it means that evolution is occcuring on progressively
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better estimates, of random fitness values. If evolution moved too fast, the system would probably evolve over
noise, never getting a very good bootstrap sample to estimate the true prediction error. On the other hand,
slower evolution would yield good bootstrap estimates, but would slow down the search through network
architectures. The appropriate balance may be a tricky issue. The crucial parameter controlling this is the
number of potential new entries into the population.

A more practical question which should be considered as well is whether the bootstrap is worth the extra
computer time required. It is important to keep in mind that each bootstrap iteration requires a run of the
hill climbing algorithm. It seems unlikely that this can be improved upon. Therefore, there may be many
problems for which the computational burden is too large, even for our ever increasing computer resources.

Finally, the reader must be cautioned that these examples were taken from one particular map with a
specific noise structure. While every effort is made to make these tests as clean and precise as possible,
they should be taken as a motivation for this procedure. Attempts to demonstrate its broader usefulness are
currently underway.

Subject to these caveats the combination of evolution and bootstrapping appears to be a useful one, and
further explorations on simulated and actual data should tell more about its effectiveness.
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