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Abstract

This paper presents a new agent-based financial market. It is designed to
be both simple enough to gain insights into the nature and structure of what
is going on at both the agent and macro levels, but remain rich enough to
allow for many interesting evolutionary experiments. The model is driven by
heterogeneous agents who put varying weights on past information as they
design portfolio strategies. It faithfully generates many of the common styl-
ized features of asset markets. It also yields some insights into the dynamics
of agent strategies and how they lead to market instabilities.

1. Introduction

Models of financial markets as aggregates of dynamic heterogeneous adap-
tive agents faithfully replicate a large range of important stylized facts, and
also offer us new insights into the underlying behavior behind asset price
movements. This paper presents a new market model continuing in this tra-
dition. It is designed with learning mechanisms that are simple enough for
easier analysis and interpretation, yet rich enough to pursue many of the
experiments in evolution and heterogeneity present in older, more complex
frameworks. The goal of this balance in market design is to provide a new
foundational structure for understanding financial market dynamics from this
different perspective.

The financial crisis of 2007-2009 has led to questions about our abilities to
realistically model macroeconomic dynamics.1 Economists who gave us in-
sightful narratives of financial instability such as Hyman Minsky and Charles

1 There have been many published criticisms, but probably the most prominent was
Krugman (September 2009). An important response, and extended commentary can be
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Kindleberger have begun reappearing in the press.2 Many policy makers felt
limited when using tools whose foundations were based on market clearing
and efficient information aggregation. In many models financial systems were
often an afterthought to technology and preference shocks, so understand-
ing what to do in periods of market stress involved speculation far from the
core of accepted economic science. These limitations led to reassessments
of many modeling strategies that have been pursued for some time. Among
these are models based on learning adaptive heterogeneous agents, or agent-
based models. They have been applied in many fields and were extensively
surveyed in Tesfatsion and Judd (2006).3

Heterogeneous agent-based models have been applied to financial markets
for quite some time.4 Their common theme is to consider worlds in which
agents are adaptively learning over time, while they perceive and contribute
to time series dynamics unfolding into the future. Endogenous price changes
then feed back into the dynamic learning mechanisms.5 Agents are modeled
as being boundedly rational, and the potential behavioral space for these
systems is large. However, some distinctions in modeling strategies have
emerged. One example of an agent-based financial market is what is known as
a “few type” model where the number of potential trading strategies is limited
to a small, and tractable set.6 Dynamics of these markets can be determined
analytically, and occasionally through computer simulations. Their simple
structure often yields very easy and intuitive results. At the other extreme
are what are known as “many type” models. In these cases the strategy
space is large. In many cases it is infinite as agents are working to develop
new and novel strategies. Obviously, the complexity of these models requires
computational methods for analysis. This in itself is not a problem, but the

found in Kocherlakota (2010).
2Their work can be found in Minsky (1986) or Kindleberger and Aliber (2005).
3Also, see summaries and thoughts about macroeconomics and modeling in Farmer and

Geanakoplos (2008), Farmer and Foley (2009), and LeBaron and Tesfatsion (2008).
4 Many examples can be found in recent surveys such as Hommes (2006), Hommes

and Wagener (2009), LeBaron (2006), Lux (2009), and Chiarella et al. (2009). Interesting
theoretical results on heterogeneity and learning in multi-agent systems are in Adam and
Marcet (2010) and Frydman and Goldberg (2007). Models incorporating stylized banking
systems can be found in Ashraf et al. (2010) and Delli Gatti et al. (2008).

5 This is an example of “reflexivity” described in Sorros (1988).
6 Early examples of these include, Frankel and Froot (1988), Day and Huang (1990),

Brock and Hommes (1998) Lux (1998), and Chiarella and He (2001).
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abilities of researchers to analyze their detailed workings has been limited.
The model presented here will try to seek a middle ground between these
approaches. It tries to be rich enough to generate interesting financial price
and volume dynamics, but simple enough for careful analysis.

Agent-based models of this form have the capability of generating stylized
facts that remain difficult for more standard approaches in economics and
finance. These include return series which are leptokurtic, and heteroskedas-
tic, and prices which take large swings from fundamental values. Also, the
market generates significant levels of trading volume that moves realistically
with returns and volatility. Empirical summaries of these features will be
presented in section 3 of the paper.

Several agent-based financial markets have highlighted the possibility for
heterogeneity in the processing of past information by learning agents.7 This
paper directly considers the destabilizing impact of large gain, or short mem-
ory traders on market dynamics. Gain is the critical parameter in all learn-
ing models that determines the weight agents put on recent data. Large
gain learners value the recent past more heavily than learners using smaller
gain parameters.8 This market will use differences in how the past is evalu-
ated by traders to generate heterogeneous future forecasts. There are many
good reasons for doing this. The most important is that the model explores
the evolutionary interactions between short and long memory traders, with
an interest in whether any of these types dominate. A second reason, is
that this parameter is part of almost all learning algorithms. In this paper,
learning will be of the constant gain variety, where a fixed gain parameter
determines agents’ perception of how to process past data. Setting this to a
specific value, constant across all agents, would impose a very large dynamic
assumption on the model.

The evolution of wealth through time is another key aspect of this market.
There is a form of passive learning in that strategies with better performance

7Examples include Diks and van der Weide (2005), Levy et al. (1994), LeBaron (2001),
and Thurner et al. (2002). Dacorogna et al. (2001) presents a philosophy, and some time
series models, for markets populated by agents with many different time perspectives.

8Similar questions about how much data agents should be using from the past are
considered in Mitra (2005). A recent model stressing what might happen when agents
overweight shorter run trends, ignoring longer length reversals is Fuster et al. (2010).
Hommes (2010) surveys the growing experimental literature that shows people following
short term trends when reporting their expectations in controlled laboratory settings.
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will acquire more wealth over time. There is also active learning in that
agents will actively seek out new strategies which appear to them to generate
better performance based on some form of utility maximization. This allows
for some interesting comparisons in learning.9

The rest of the paper (section 4) examines some details of the market. It
reports on the distribution of agents surviving in the market which is criti-
cal to market dynamics. It analyzes the specific comovements, and market
behavior around crashes which are important to the overall evolutionary pro-
cess of agents and learning. Finally, some simple robustness checks are per-
formed by modifying the set of agents. Section 5 will summarize, conclude,
and highlight future questions which can be addressed in this framework.

2. Model Structure

This section describes the structure of the model. It is designed to be
tractable, streamlined, and close to well known simple financial models. The
use of recognized components allows for better analysis of the impact of
interactive learning mechanisms on financial dynamics. Before getting into
the details, I will emphasize several key features.

First, market forecasts are drawn from two common forecasting families,
adaptive and fundamental expectations. The adaptive traders base their
expectations of future returns from weighted sums of recent returns. The
expectation structure is related to simple adaptive expectations, but also
has origins in either Kalman filter, momentum or trend following mecha-
nisms. The fundamental traders base their expectations on deviations of
the price from the level of dividends using (Pt/Dt) ratios. The impact of
the price/dividend ratio on conditional expected returns is determined by
running an adaptive regression using a recursive least squares learning algo-
rithm.

Agent portfolio choices are made using preferences which correspond to
standard myopic constant relative risk aversion. Portfolio decisions depend
on agents’ expectations of the conditional expected return and variance of

9Passive learning models have been studied extensively. Good examples are Blume and
Easley (1990), Blume and Easley (2006), DeLong et al. (1991), Evstigneev et al. (2006),
Figlewski (1978), Kogan et al. (2006), and Sandroni (2000). Some explorations of the
biases present when simple passive wealth evolution is implemented are given in LeBaron
(2012 forthcoming). Further discussion is contained in LeBaron (2011).
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future stock returns. This allows for splitting the learning task on return and
risk into two different components which adds to the tractability of the model.
These preferences could also be interpreted as coming from intertemporal
recursive preferences subject to certain further assumptions.

The economic structure of the model is well defined, simple, and close to
that for standard simple finance models.10 Dividends are calibrated to the
trend and volatility of real dividend movements from U.S. aggregate equity
markets.11 The basic experiment is then to see if market mechanisms can
generate the kinds of empirical features we observe in actual data from this
relatively quiet, but stochastic fundamental driving process. The market can
therefore be viewed as a nonlinear volatility generator for actual price se-
ries. The market structure also is important in that outside resources arrive
only through the dividend flows entering the economy, and are used up only
through consumption. The consumption levels are set to be proportional to
wealth which, though unrealistic, captures the general notion that consump-
tion and wealth must be cointegrated in the long run. Finally, prices are set
to clear the market for the fixed supply of equity shares. The market clear-
ing procedure allows for the price to be included in expectations of future
returns, so an equilibrium price level is a form of temporary equilibrium for
a given state of wealth spread across the current forecasting rules.

Rule heterogeneity and expectational learning for both expected returns,
and conditional variances, is concentrated in the forecast and regression gain
parameters. Constant gain learning mechanisms put fixed declining expo-
nential weights on past information. Here, the competition across rules is
basically a race across different gains, or weights of the past. The market is
continually asking the question whether agents weighing recent returns more
heavily can be driven out of the market by more long term forecasters.

The empirical features of the market are emergent in that none of these
are prewired into the individual trading algorithms. Some features from fi-
nancial data that this market replicates are very interesting. This would

10Its origins are a primitive version of models such as Samuelson (1969), Merton (1969),
and Lucas (1978) which form a foundation for much of academic finance.

11 Dividend calibration uses the annual Shiller dividend series available at Robert
Shiller’s website. Much of this data is used in his book Shiller (2000). Another good
source of benchmark series is Campbell (1999) which gives an extensive global perspec-
tive. Early results show that the basic results are not sensitive to the exact dividend
growth and volatility levels.
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include the simple and basic feature of low return autocorrelations. In this
market traders using short range autoregressive models play the role of short
run arbitragers who successfully eliminate short run autocorrelations. They
continually adapt to changing correlations in the data, and their adaptation
and competition with others drives return correlations to near zero. This sim-
ple mechanism of competitive near term market efficiency seems consistent
with most stories we think about occurring in real markets.

Finally, learning in the market can take two different forms. First, there
is a form of passive learning in which wealth which is committed to rules
that perform well tends to grow over time. These strategies then play an
ever bigger role in price determination. This is the basic idea that successful
strategies will eventually take over the market. All simulations will be run
with some form of passive learning present, since it is fundamental to the
model and its wealth dynamics. Beyond this, the model can also consider
a form of active learning in which agents periodically adapt their behavior
by changing to forecast rules that improve their expected utility. There are
many ways to implement this form of adaptive learning in the model, and
only a few will be explored here. Another interesting question is how precise
the estimates of expected utility are that are guiding the active learning
dynamics. In a world of noisy financial time series adaptations might simply
generate a form of drift across the various forecasting rules. Comparing and
contrasting these two different types of learning is an interesting experiment
which this model is designed to explore.

2.1. Assets

The market consists of only two assets. First, there is a risky asset paying
a stochastic dividend, Dt. The log dividend, dt = log(Dt), follows a random
walk,

dt+1 = dg + dt + εt. (1)

The constant dg is the growth rate, or drift, for the log dividend process.12

Time will be incremented in units of weeks. The shocks to dividends are given
by εt which is independent over time, and follows a Gaussian distribution
with zero mean, and variance, σ2

d, that will be calibrated to actual long run
dividends from the U.S. The dividend growth rate would then be given by
edg+(1/2)σ2

d which is approximately Dg = dg + (1/2)σ2
d.

12 Lower case variables will represent logs of the corresponding variables.
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The return on the stock with dividend at date t is given by

Rt =
Pt +Dt − Pt−1

Pt−1
, (2)

where Pt is the price of the stock at time t. Timing in the market is critical.
Dividends are paid at the beginning of time period t. Both Pt and Dt are
part of the information set used in forecasting future returns, Rt+1. There
are I individual agents in the model indexed by i. The total supply of shares
is fixed, and set to unity,

I∑
i=1

St,i = 1. (3)

There is also a risk free asset that is available in infinite supply, with agent
i holding Bt,i units at time t. The risk free asset pays a rate of rf which will be
assumed to be zero in all simulations. This is done for two important reasons.
It limits the injection of outside resources to the dividend process only. Also,
it allows for an interpretation of this as a model with a perfectly storable
consumption good along with the risky asset. The standard intertemporal
budget constraint holds for each agent i,

Wt,i = PtSt,i +Bt,i + Ct,i = (Pt +Dt)St−1,i + (1 + rf )Bt−1,i, (4)

where Wt,i represents the wealth at time t for agent i. Consumption at time
t by agent i is given by Ct,i.

2.2. Preferences

Portfolio choices in the model are determined by a simple myopic power
utility function in future wealth. The agent’s portfolio problem corresponds
to,

maxαt,i
EitW

1−γ
t+1,i

1−γ , (5)

st. Wt+1,i = (1 +Rp
t+1,i)(Wt,i − Ct,i), (6)

Rp
t+1,i = αt,iRt+1 + (1 − αt,i)Rf . (7)

αt,i represents agent i’s fraction of savings (W − C) in the risky asset. It
is well known that the solution to this problem yields an optimal portfolio
weight given by,

α∗t,i =
Ei
t(rt+1) − rf + 1

2
σ2
t,i

γσ2
t,i

, (8)
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with rt = log(1 + Rt), rf = log(1 + Rf ), and σ2
t,i is agent i’s estimate of

the conditional variance at time t. This is perturbed by a small amount of
individual noise to give the actual portfolio choice for agent i,

αt,i = α∗t,i + εt,i. (9)

Where εt,i is an individual shock designed to make sure that there is some
small amount of heterogeneity to keep trade operating.13 It is normally
distributed with variance, σ2

ε .
In the current version of the model neither leverage nor short sales are

allowed. The fractional demand is restricted to αt,i with αL ≤ αt,i ≤ αH
with αL = 0.05 and αH = 0.95. The addition of both these features is
important, but adds significant model complexity. One key problem is that
with either one of these, one must address problems of agent bankruptcy,
and borrowing constraints. Both of these are not trivial, and involve many
possible implementation details.

Consumption will be assumed to be a constant fraction of wealth, λ. This
is identical over agents, and constant over time. The intertemporal budget
constraint is therefore given by

Wt+1,i = (1 +Rp
t+1)(1 − λ)Wt,i. (10)

This also gives the current period budget constraint,

PtSt,i +Bt,i = (1 − λ)((Pt +Dt)St−1,i + (1 + rf )Bt−1,i). (11)

This simplified portfolio strategy will be used throughout the paper. It
is important to note that the fixed consumption/wealth, myopic strategy
approach given here would be optimal in a standard intertemporal model
for consumption portfolio choice subject to two key assumptions. First, the
intertemporal elasticity of substitution would have to be unity to fix the
consumption wealth ratio, and second, the correlation between unexpected
returns and certain state variables would have to be zero to eliminate the
demand for intertemporal hedging.14

13The derivation of this follows Campbell and Viceira (2002). It involves taking a Taylor
series approximation for the log portfolio return.

14See Campbell and Viceira (1999) for the basic framework. Also, see Giovannini and
Weil (1989) for early work on determining conditions for myopic portfolio decisions. Hedg-
ing demands would only impose a constant shift on the optimal portfolio, so it is an
interesting question how much of an impact this might have on the results.
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2.3. Expected Return Forecasts

The basic problem faced by agents is to forecast both expected returns
and the conditional variance one period into the future. This section will
describe the forecasting tools used for expected returns. A forecast strategy,
indexed by j, is a method for generating an expected return forecast Ej(rt+1).
Agents, indexed by i, can either be fixed to a given forecasting rule, or may
adjust rules over time depending on the experiment.

All the forecasts will use long range forecasts of expected values using a
long range minimum gain level, gL.

r̄t = (1 − gL)r̄t−1 + gLrt (12)

(p− d)t = (1 − gL)(p− d)t−1 + gL(p− d)t−1 (13)

σ̄2
r,t = (1 − gL)σ̄2

t−1 + gL(rt − r̄t)
2 (14)

σ̄2
pd,t = (1 − gL)σ̄2

pd,t−1 + gL((p− d)t − (p− d)t)
2 (15)

The long range forecasts, r̄t, (p− d)t, σ̄
2
r,t, and σ̄2

pd,t correspond to the mean
log return, log price/dividend ratio, and variance respectively, and the gain
parameter gL is common across all agents.

The forecasts used will combine four linear forecasts drawn from well
known forecast families.15 The first of these is an adaptive linear forecast
which corresponds to,

f jt = f jt−1 + gj(rt − f jt−1). (16)

Forecasts of expected returns are dynamically adjusted based on the latest
forecast and rt. This forecast format is simple and generic. It has roots con-
nected to adaptive expectations, trend following technical trading, and also
Kalman filtering.16 In all these cases a forecast is updated given its recent
error. The critical parameter is the gain level represented by gj. This deter-
mines the weight that agents put on recent returns and how this impacts their

15 This division of rules is influenced by the many models in the “few type” category of
agent-based financial markets. These include Brock and Hommes (1998), Day and Huang
(1990), Gennotte and Leland (1990), Lux (1998). Some of the origins of this style of
modeling financial markets can be traced to Zeeman (1974).

16A nice summary of the connections between Kalman filtering, adaptive expectations,
and recursive least squares is given in Sargent (1999).
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expectations of the future. Forecasts with a large range of gain parameters
will compete against each other in the market. Finally, this forecast will be
trimmed in that it is restricted to stay between the values of [−hj, hj]. These
will be set to relatively large values, and are randomly distributed across the
j rules.

The second forecasting rule is based on a fundamental strategy. This
forecast uses log price dividend ratio regressions as a basis for forecasting
future returns,

f jt = r̄t + βjt ((p− d)t − (p− d)t). (17)

where (p− d)t is log(Pt/Dt). Although agents are only interested in the one
period ahead forecasts, the P/D regressions will be estimated using the mean
return over the next MPD periods, with MPD = 52 for all simulations.

The third forecast rule will be based on linear regressions, and is referred
to as a “short AR” strategy. It is a predictor of returns at time t given by

f jt = r̄t +
MAR∑
i=1

βjt,i(rt−i+1 − r̄t) (18)

This strategy works to eliminate short range autocorrelations in returns series
through its behavior, and MAR = 3 for all runs in this paper.

The previous two rules will be estimated each period using recursive least
squares. There are many examples of this for financial market learning.17

The key difference is that this model will stress heterogeneity in the learning
algorithms with wealth shifting across many different rules, each using a
different gain parameter in its online updating.18

The final rule is a benchmark strategy. It is a form of buy and hold
strategy using the long run mean, r̄t, for the expected return, and the long
run variance, σ̄2

r,t, as the variance estimate. This portfolio fraction is then
determined by the demand equation used by the other forecasting rules. This
gives a useful passive benchmark strategy which can be monitored for relative
wealth accumulation in comparison with the other active strategies.

17 See Evans and Honkapohja (2001) for many examples, and also very extensive de-
scriptions of recursive least squares learning methods.

18Another recent model stressing heterogeneity in an OLS learning environment is
Georges (2008) in which OLS learning rules are updated asynchronously.
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2.4. Regression Updates
Forecasting rules are continually updated. The adaptive forecast only

involves fixed forecast parameters, so its updates are trivial, requiring only
the recent return. The two regression forecasts are updated each period using
recursive least squares.

All the rules assume a constant gain parameter, but each rule in the
family corresponds to a different gain level. This again corresponds to varying
weights for the forecasts looking at past data. The fundamental regression
is run using the long range return,

r̃t =
1

MPD

MPD∑
j=1

rt−j+1. (19)

The fundamental regression is updated according to,

βjt+1 = βjt +
gj
σ̄2
pd,t

((p− d)t−MPD
ut,j) (20)

ut,j = (r̃t − fj,t−MPD
).

For the lagged return regression this would be,

βjt+1,i = βjt,i +
gj
σ̄2
r,t

(rt−iut,j) i = 1, 2, 3, (21)

ut,j = (rt − f jt )

where gj is again the critical gain parameter, and it varies across forecast
rules.19 In both forecast regressions the forecast error, ut,j, is trimmed. If
ut,j > hj it is set to hj, and if ut,j < −hj it is set to −hj. This dampens the
impact of large price moves on the forecast estimation process.

2.5. Variance Forecasts
The optimal portfolio choice demands a forecast of the conditional vari-

ance as well as the conditional mean.20 The variance forecasts will be gener-
ated from adaptive expectations as in,

σ̂2
t,j = σ̂2

t−1,j + gj,σ(e2t,j − σ̂2
t−1,j) (22)

19This format for multivariate updating is only an approximation to the true recursive
estimation procedure. It is assuming that the variance/covariance matrix of returns is
diagonal. Generated returns in the model are close to uncorrelated, so this approximation
is probably reasonable. This is done to avoid performing many costly matrix inversions.

20 Several other papers have explored the dynamics of risk and return forecasting. This
includes Branch and Evans (2011 forthcoming) and Gaunersdorfer (2000). In LeBaron
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e2t,j = (rt − f jt−1)
2, (23)

where e2t,j is the squared forecast error at time t, for rule j. The above con-
ditional variance estimate is used for all the rules. There is no attempt to
develop a wide range of variance forecasting rules, reflecting the fact that
while there may be many ways to estimate a conditional variance, they often
produce similar results.21 This forecast method has many useful characteris-
tics as a benchmark forecast. First, it is essentially an adaptive expectations
forecast on second moments, and therefore shares a functional form similar
to that for the adaptive expectations family of return forecasts. Second, it is
closely related to other familiar conditional variance estimates.22 Finally, the
gain level for the variance in a forecast rule, gj,σ, is allowed to be different
from that used in the mean expectations, gj. This allows for rules to have a
different time series perspective on returns and volatility.

There is one further aspect of heterogeneity that is important to the mar-
ket dynamics. Agents do not update their variance estimates immediately.
They do it with a lag using a stochastic updating processes. Agent i will
update to the current variance estimate for rule j, σ̂2

t+1,j, with probability
pσ.23 This allows for a greater amount of heterogeneity in variance forecasts,
and mitigates some extreme moves in price which can be caused by a simul-
taneous readjustment in market risk forecasts. This is a form of simulating
more heterogeneity in the variance forecasting process, but in a stochastic
fashion.

(2001) risk is implicitly considered through the utility function and portfolio returns.
Obviously, methods that parameterize risk in the variance may miss other components of
the return distribution that agents care about, but the gain in tractability is important.

21See Nelson (1992) for early work on this topic.
22 See Bollerslev et al. (1995) or Andersen et al. (2006) for surveys of the large literature

on volatility modeling.
23Also, the agents do not use pt information in their forecasts of the conditional variance

at time t. This differs from the return forecasts which do use time t information. Incorpo-
rating time t information into variance forecasts will cause the market not to converge as
prices can spiral far from their current levels, causing market demand for shares to crash
to zero.
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2.6. Market Clearing

The market is cleared by setting the individual share demands equal to
the aggregate share supply of unity,

1 =
I∑
i=1

Zt,i(Pt). (24)

Writing the demand for shares as its fraction of current wealth, remembering
that αt,i is a function of the current price gives

PtZt,i = (1 − λ)αt,i(Pt)Wt,i, (25)

Zt,i(Pt) = (1 − λ)αt,i(Pt)
(Pt +Dt)St−1,i +Bt−1,i

Pt
. (26)

This market is cleared for the current price level Pt. This needs to be done
numerically given the complexities of the various demand functions and fore-
casts, and also the boundary conditions on αt,i.

24 It is important to note
again, that forecasts are conditional on the price at time t, so the market
clearing involves finding a price which clears the market for all agent de-
mands, allowing these demands to be conditioned on their forecasts of Rt+1

given the current price and dividend.25

2.7. Gain Levels

An important design question for the simulation is how to set the range
of gain levels for the various forecast rules. These will determine the dy-
namics of forecasts. Given that this is an entire distribution of values it will
be impossible to accomplish much in terms of sensitivity analysis on this.
Therefore, a reasonable mechanism will be used to generate these, and this
will be used in all the simulations.

Gain levels will be thought of using their half-life equivalents, since the
gain numbers themselves do not offer much in the way of economic or fore-
casting intuition. For this think of the simple exponential forecast mechanism

24A binary search is used to find the market clearing price using starting information
from Pt−1. The details of this algorithm are given in the appendix.

25 The current price determines Rt which is an input into both the adaptive and short
AR forecasts. Also, the price level Pt enters into the Pt/Dt ratio which is required for
the fundamental forecasts. All forecasts are updated with this time t information in the
market clearing process.
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with
f jt+1 = (1 − gj)f

j
t + gjet+1. (27)

This easily maps to the simple exponential forecast rule,

ft =
∞∑
k=1

(1 − gj)
ket−k. (28)

The half-life of this forecast corresponds to the number of periods, mh, which
drops the weight to 1/2,

1

2
= (1 − gj)

mh , (29)

or
gj = 1 − 2−1/mh . (30)

The distribution of mh then is the key object of choice here. It is chosen so
that log2(mh) is distributed uniformly between a given minimum and max-
imum value. The gain levels are further simplified to use only 5 discrete
values. These are given in table 1, and are [1, 2.5, 7, 18, 50] years respec-
tively. In the long memory (low gain) experiments these five values will be
distributed between 45 and 50 years.

These distributions are used for all forecasting rules. All forecast rules
need a gain both for the expected return forecast, and the variance forecast.
These will be chosen independently from each other. This allows for agents
to have differing perspectives on the importance of past data for the expected
return and variance processes.

2.8. Adaptive rule selection

This model allows for both passive and active learning. Passive learning
corresponds to the long term evolution of wealth across strategies. Beyond
passive learning, the model allows for active learning, or more adaptive rule
selection. This mechanism addresses the fact that agents will seek out strate-
gies which best optimize their estimated objective functions. In this sense it
is a form of adaptive utility maximization.

Implementing such a learning process opens a large number of design
questions. This paper stays with a relatively simple implementation. The
first question is how to deal with estimating expected utility. Expected utility
will be estimated using an exponentially weighted average over the recent
past,

Ût,j = Ût−1,j + giu(Ut,j − Ût−1,j), (31)
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where Ut,j is the realized utility for rule j received at time t. This corresponds
to,

Ut,j =
1

1 − γ
(1 +Rp

t,j)
(1−γ) (32)

with Rp
t,j the portfolio holdings of rule j at time t. Each rule reports this value

for the 5 discrete agent gain parameters, giu. Agents choose rules optimally
using the objective that corresponds to their specific perspective on the past,
giu, which is a fixed characteristic. The gain parameter giu follows the same
discrete distribution as that for the expected return and variance forecasts.

The final component in the learning dynamic controls how the agents
change forecasting rules. The mechanism is simple, but designed to capture
a kind of heterogeneous updating that seems plausible. Each period a certain
fraction, L, of agents is chosen at random. Each one randomly chooses a new
rule out of the set of all rules. If this rule exceeds the current one in terms
of estimated expected utility, then the agent switches forecasting rules.

3. Results and Experiments

3.1. Calibration and parameter settings

Table 1 presents the key parameters used in the simulation. As men-
tioned, the dividend series is set to a geometric random walk with drift. The
drift level, and annual standard deviation are set to match those from the
real dividend series in Shiller’s annual data set. This gives a recognizable real
growth rate for dividends of 2 percent per year. The level of risk aversion,
γ will be fixed at 3.5 for all runs. This is a reasonable level for standard
constant relative risk aversion.26 The gain range for the learning models is
set to 1-50 years in half-life values. This means that the largest gain values
one year in the past at one half the weight given to today, and the smallest
gain weighs data 50 years back at 1/2 today’s weight. For all runs there
will be I = 16000 agents, and J = 4000 forecast rules. The value of λ, the
consumption wealth ratio, was chosen to give both a reasonable P/D ratio,
and also reasonable dynamics in the P/D time series.

The basic simulations using these parameters with agent adaptation will
be referred to as the baseline model. It will be shown that this model repli-
cates most of the common features in financial series, and yields a large

26Many of the results can be replicated for a range of γ from 2 − 4. The value of 3.5
gives some of the most realistic looking series.
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amount of intuition into price dynamics. Extensions and robustness checks
will build and add to this baseline case. All simulations will be run for
200, 000 weeks, or almost 4, 000 years. Statistics are drawn from the end of
this simulation.

Before beginning with this baseline experiment, the model is tested to
see if it can converge to a reasonable, recognizable equilibrium for some
parameter values. The model is simulated with learning half lives ranging
from 40 to 50 years.27 The objective is to look at a population of agents
restricted to only using long time series in their decision making and learning
dynamics. Figure 1 presents a basic summary of the results for this case using
data from a run length of 200, 000 weeks. The top panel displays a subset
of weekly returns which looks relatively uniform. The second panel shows
that the returns are close to Gaussian in terms of distribution. Finally, the
bottom panel shows the autocorrelations for both the returns and absolute
returns. Both are near zero at all lags. This shows the model generating
time series which appear independent and close to Gaussian. Obviously,
neither of these patterns is representative of actual return series. However,
this is an important test of the learning algorithms in the model. Forcing
the populations to only low gain types, gives the learning algorithms enough
structure to converge to a reasonable equilibrium.

3.2. Time series features

3.2.1. Weekly Series

The simulations now turn to baseline runs using the parameter values
from table 1. This performs the main test of the paper which is to see how
learning algorithms of different gain levels interact with each other. Figure
1 is now repeated for this case in figure 2. The features are dramatically
different from those in the first figure. The returns now show pockets of
clustered volatility, and they are not close to a Gaussian, exhibiting fat tailed
behavior. The bottom panel reports the autocorrelations, and shows that the
returns are close to uncorrelated, but absolute returns show strong positive

27 For these runs only the coefficient of relative risk aversion is increased to 8. This is
done since the model drives returns to a very low volatility. At this level, for the baseline
risk aversion, agents will be up against the portfolio constraints at the maximum holding
level. In this case, market dynamics can occasionally become unstable. It is necessary to
move the agents into the interior of their choice space to maintain stability. In some ways
this is a form of the equity premium puzzle in a dynamic learning setting.
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correlations.
Figure 3 presents a simple price series from the last 10 years of the baseline

simulation along with the most recent 10 years for the S&P 500 index. The
two figures look similar, but not much can be said from the price figures
alone. More detailed pictorial information is given in figure 4 which compares
weekly continuously compounded return series from the CRSP value weighted
index with dividends (1926-2009), and the baseline simulation. Both display
some extreme movements, and some pockets of increased volatility which are
common features of most financial series. These returns are further compared
in two histograms in figure 5. For these figures the full sample is used again
for the CRSP weekly returns and a similar length period from the end of the
simulation run. Both show visually comparable levels of leptokurtosis relative
to a standard Gaussian which is drawn for comparison. They display a large
peak near zero, and too many observations in the tails.

Table 2 presents weekly summary statistics which reflect most of these
early graphical features. They use the full 1926-2009 series for the CRSP
index, and an even longer series, corresponding to the final 25, 000 weeks
in the baseline simulation. The table also reports results for an individual
stock series using IBM returns from 1926 though Dec 2009. All returns
include dividend distributions. Mean returns are in weekly percentages. The
simulation return level is above the return for the market index, but below
that for the IBM return. These mean return comparisons are casual since
the data returns are nominal, and the model returns are real since there
is no inflation. The model displays one of its important characteristics in
the second line which reports the standard deviation. The weekly standard
deviation for the model is 3.54 which is higher than the index, but close to
the level of volatility in the IBM return series. In row three all series show
evidence for some negative skewness. Row four shows the usual large amount
of kurtosis for all 3 series. This is consistent with the visual evidence already
presented.

The last two rows in the table present the tail exponent which is another
measure of the shape of the tail in a distribution. This estimate uses a mod-
ified version of the Hill estimator as developed in (Huisman et al., 2001),
and further explored in (LeBaron, 2008) who shows it gives a very reliable
estimate of this tail shape parameter. Values in the neighborhood of 2 − 4
are common for weekly asset return series, so the results here are all within
reasonable ranges. There is some indication that the simulations are pro-
ducing more extreme tails than the actual data which is consistent with the
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graphical evidence in figure 5.
Figure 6 displays the return autocorrelations for the two series. The top

panel displays autocorrelations for returns on the baseline simulation and
the weekly CRSP index. They reveal the common result of very low auto-
correlations in returns. The lower panel in figure 6 reports autocorrelations
for absolute returns. Positive correlations in absolute returns continue out
to one year for both the simulation and actual return series. Persistence in
the CRSP series is slightly smaller at the lower lag lengths.

3.2.2. Annual Series

This section turns to the longer run properties of the simulation gener-
ated time series. For comparisons, the annual data collected by Shiller are
used. Figure 7 presents both the S&P price/dividend (P/D) ratio, and the
price/dividend ratio from the simulation. The simulation contains only one
fundamental for the stock, and it can also be viewed as an earnings series
with a 100 percent payout. This figure shows the simulation giving reason-
able movements around the fundamental with some large swings above and
below as in the actual data. The actual series is truncated to yield a better
scale on the two plots. Its maximum value at the top of the dot com bubble
is near 90.

Quantitative levels for these long range features are presented in table
3. The first two rows give the mean and standard deviation for the P/E
and P/D ratios at annual frequency. The first two columns show a generally
good alignment between the simulation and the annual P/E ratios. The P/D
ratio from the actual series is slightly more volatile with an annual standard
deviation of over 12. Deviations from fundamentals are very persistent, and
these are displayed in all three series by the large first order autocorrelation.
Again, the simulation and the P/E ratio from the data are comparable with
values of 0.72 and 0.68 respectively. The P/D ratio is slightly larger with an
autocorrelation of 0.93. The last three rows present the annual mean and
standard deviations for the total real returns (inclusive of dividends) for the
simulation and annual S&P data. The returns generate a real return of 12.4
percent as compared to 7.95 percent for the S&P. The mean log returns are
given in the next row, and are also comparable between the simulation and
data. The simulation gives an annual standard deviation of 0.26 which is
large relative to the value 0.17 for the S&P. The last row reports the annual
Sharpe ratio for the two series with the simulation showing a value of 0.44
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which is larger than the 0.30 from the actual data.28

4. Market internals and robustness

4.1. Agents

This section will analyze some of the distributional features of agent
wealth and how it moves across strategies. Figure 8 displays the wealth
distributions over time for the entire 200, 000 length simulation. Several in-
teresting features emerge from this figure. First, the market is dominated
by the buy and hold strategy. It controls almost 50 percent of the wealth.
It is very interesting that there is still enough wealth controlled by the dy-
namic strategies to have an impact on pricing, even though they are only
about 30 percent of the market. This emphasizes the importance of certain
marginal types in price determination in a heterogeneous world. The adap-
tive strategies are generally ranked second, in terms of wealth, followed by
the fundamental, and then a very small fraction of the short AR traders.
The ranking is relatively stable, but the fractions do exhibit some interesting
dynamics over time. Fundamental strategy wealth is particularly volatile,
and is generally counter cyclical to the adaptive strategies.

Wealth distributions across gain levels in forecasts, and volatility fore-
casts are as important as the actual strategy types. High gain forecasts
are sensitive to recent moves in prices and convert small price changes into
relatively large changes in their forecasts. Figure 9 presents histograms for
wealth distributions across the five different gain levels for each of the forecast
strategy types. Moving left to right goes from smallest to largest half-life.
The distributions are constructed from 100 snapshots taken off the market at
different times. They represent the means across these 100 snapshots. The
purpose of this is to get a better picture of the unconditional time averages
on these densities, as opposed to the changing conditional densities at each
time t. The patterns for the strategies are very interesting. The adaptive
and fundamental forecasts support a wide range of gain parameters. Wealth
is not drawn to any particular value, and the market is composed of both
long and short horizon traders. Interestingly, the short AR strategies con-
centrate their regressions on low gain (long horizon) estimates. These simple

28 For the simulation this is simply the annual return divided by the standard deviation.
For the S&P the annual interest rate from the Shiller series is used in the standard estimate,
(re − rf )/σe.
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linear forecasts appear to be functioning well in terms of selecting for low
gain levels in their learning models.

Gain parameters are also part of volatility forecasting too. They control
the impact of recent squared returns on forecast volatility estimates. Unlike
the previous plot, these gain parameters are used in the same fashion by
all three forecast families. Density plots are given for these in figure 10.
The three panels again correspond to the different forecast families. The
adaptive strategies support all gain levels, but there is some indication of a
bias toward larger gain volatility models for both the fundamental and short
AR forecasts types. Since risk is an important part of the portfolio choice
problem, these distributions are a key indicator of the underlying causes of
market instability. This evidence suggests that a large amount of wealth
is concentrated on strategies which put a large amount of weight on recent
volatility when estimating risk.

Figure 11 shows how the strategies move with the stock price. The strate-
gies are presented as the fraction of wealth invested in the risky asset. The
top panel is a price snapshot from the baseline simulation run. The second
panel displays the strategies for the adaptive and fundamental rules. These
are wealth weighted averages across the entire forecast family. The adaptive
strategy moves with the price trends that it is designed to follow. As price
moves up, it locks in on the trend, and often maxes out the portfolio to the
risky asset. As a market crashes, these strategies quickly withdraw from the
risky asset. The fundamental strategy is less precise in its behavior. It gen-
erally takes a strong position after a market fall, but not all the time. It can
also take a strong position just before a fall.

There are two possible reasons for this hesitancy on the part of funda-
mental traders. First, while market crashes should drive up their conditional
returns, their conditional risk estimates will also increase. Confirmation of
this is given in figure 12. The top panel is again the price time series. The
middle series are the portfolio fractions which correspond to fundamental
strategies using the highest and lowest gain variance forecasts. The low gain
forecasts are not sensitive to recent changes in volatility, and show expected
strong portfolio swings on market declines. The high gain forecasts are very
sensitive to recent changes in volatility, which diminish the impact of their
changes in conditional mean returns. In several cases their response to in-
creases in volatility dominates, in that they reduce their exposure to the risky
asset.

A second possible explanation for the loose connections between market
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crashes and the behavior of fundamental traders is the fact that their esti-
mated models will weaken as the market goes into a bubble period. The lower
panel in figure 12 shows the estimate of the coefficient from the regression of
returns on the logged price dividend ratio. The figure displays a time series
for this recursively estimated parameter both for the lowest and highest gain
learners. The low gain learners display a reliably negative, and stable value
for this parameter. This would yield a reversal strategy for fundamental
traders. The high gain counterpart for this forecast family shows a fluctu-
ating value which can occasionally move toward zero as a bubble proceeds.
This indicates that agents using relatively short series in these price/dividend
regressions begin looking at sets of data which no longer contain evidence
of price reversion toward fundamentals. They have lost faith in the basic
fundamental forecast weakening their stabilizing trading strategies.

4.2. Crashes

This section examines the dynamics of the market around extreme price
declines or crashes. Much of the market behavior can be summarized as
moving through slow expansions increasing well above fundamentals, followed
by large and sudden price declines which move the market well below its
fundamental value. Figure 13 displays the time dynamics of a short snapshot
of the market. The top panel repeats the price time series for the market.
The 3rd panel displays information on the total market trading volume each
period. Volume comoves with prices in interesting ways. Market crashes
are usually followed by large increases in trading volume. Also, as bubbles
increase, trading volume slowly drops off, often reaching a local minimum
just before a market crash. The 4th panel displays the wealth weighted
conditional variance estimate across strategies. This moves as expected with
sharp, and persistent increases after large market declines. Similar to trading
volume, volatility, or market risk perception is often at a local minimum near
the top of a bubble.

The 2nd panel is the most interesting in its connections to market dy-
namics. Since the market demand curve is well defined numerically in the
simulation, one can estimate the demand elasticity. Magnitudes will not be
a major concern here, but the sign will be. Negative values indicate well
behaved downward sloping demand curves, but positive values indicate that
the demand curve has a positive slope at the current equilibrium price. Ob-
viously, this will contribute to unstable behavior. Though the market often
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stays comfortably in the negative region, it can swing positive occasionally.
This is often at or near periods of extreme market instability.

An intuitive picture of what happens to demand curves is presented in
figure 14. Two excess demand curves are displayed. One is during normal
times, and one just after a large price decline. The crash period demand
shows a kink which could be related to market instabilities. For example,
imagine the curve shifting slightly left with the cusp just moving off the
point where excess demand is zero. This would cause a sudden downward
shift in the market clearing price. Given the set of strategies in the market,
it is not surprising that the market might be unstable in some periods. The
simple adaptive forecasts are a major force in market instability since they
will increase demands on a price rise, and decrease on a price fall. The
behavior of aggregate demand will depend critically on their fraction in the
population.

One part of the dynamics which probably contributes to some of the insta-
bility is the interaction between agents’ risk perception and crash dynamics.
As a bubble continues, risk perception, measured as estimated variance, falls
(figure 13). In the aggregate this will push agents to more aggressive in-
vestments which can contribute to instability through the following channel.
Overall market demand for shares is given by,

St =
I∑
i=1

αi(Pt)(St−1,i(Pt +Dt) +Bt−1,i)

Pt
. (33)

Which can be split into two parts,

St =
I∑
i=1

αi(Pt)St−1,i +
I∑
i=1

αi(Pt)
(St−1,iDt +Bt−1,i)

Pt
. (34)

The actual shape of the demand curve is complicated and depends on the dis-
tribution of wealth across various strategies represented by αi(Pt). However,
the two parts of the demand give an intuitive picture of why, as strategies
move closer to αi(Pt) = 1, demand will more likely be in the unstable re-
gion. The second part of the demand function includes both a component
based on αi(Pt) which will vary according to the specific strategy, and a kind
of “rebalancing” component, depending on Bt−1,i/Pt which will generate a
well behaved downward component in market demand. This represents the
natural adjustment investors make with a fall in price for a given α strat-
egy. To maintain the same portfolio composition a price fall necessitates new
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share purchases, and buying pressure comes into the falling market. This
represents a mechanical stabilizing force. As α gets closer to zero this ef-
fect is reduced. It is also important to note that if one allowed leverage in
the model this is where it would enter. Leverage would allow for α to be
greater than 1. In this case the mechanical “rebalancing” would shift from
a stabilizing to a destabilizing force since Bt−1,i would be negative. The nice
feature is that the unstable selling pressure driven by leverage can be viewed
as part of a continuum in the general portfolio decision making process. This
is why leverage per se is not necessary in this market to generate instabil-
ity. However, it is likely that it would magnify the extreme moves in the
market.29

The analysis of figure 13 is continued more formally in figure 15. This
picture analyzes the dynamics of the market near large price declines. A
large decline is defined as a return strictly less than the 0.005 quantile of the
return distribution using the last 50, 000 weeks in the simulation. This point
is dated as a crash, and the next 10 weeks after this are skipped for crash
dates. This is obviously an imprecise measure, but it is relatively simple and
effective. The upper left panel displays the dynamics of volume around a
crash. The dashed line indicates the unconditional mean. Trading volume
is low but rising before the crash, and then hits a large upward spike which
leads to a period of persistent and high volume for up to 100 weeks after the
crash.

The upper right panel performs the same experiment with the aggregate
wealth weighted trading strategy recorded as the fraction of wealth in the
equity market. As expected it shows a sudden and large drop when the crash
hits, and slowly starts to increase; though it is still well below its mean value
even after 100 weeks have gone by. There is also indication these portfolio
strategies begin dropping well ahead of the crash.

The lower left panel displays the coefficient for the price/dividend regres-
sion. It moves in a generally expected way, in that it is above its mean before
the crash, and then drops dramatically as the recent high P/D ratio is con-
firmed in terms of low conditional expected returns by the sudden drop in
price. Its actual dynamics is a little unusual, because it starts falling before
the crash, and reaches a minimum about 52 weeks after the crash. This lat-
ter feature makes sense since the crash P/D level doesn’t enter into the P/D

29See Thurner et al. (2010) for a model which requires leverage for market instability.
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regression until 52 weeks after a crash has gone by. Its unusual dynamics are
related to the fact that agents are running long range (52 week) regressions
in their models.

The lower right panel shows the dynamics of the elasticity near a crash. It
sweeps through zero, and moves into the positive, unstable range in a period
near the crash. It is interesting that it is well above its unconditional mean
in both the 100 weeks before and after the crash. An important question is
whether the elasticity sign change actually leads a crash. The figure draws
a line at the point where the sign changes. This turns out to be 3 weeks
prior to the crash. It is not clear whether in reality this would be enough
information to forecast an eminent period of market instability, and further
analysis will be necessary. One tricky aspect in all four of these panels is
the dating of crises. Imprecise dating may lead to some spurious indications
of crash predictability for some indicators. It is also important to realize
that aside from trading volume, most of the indicators are not observable in
actual market data.

4.3. Robustness checks

Analysis of the wealth and strategy compositions in the market suggests
that high gain learning algorithms are difficult to eliminate, and their pres-
ence is important for market instability. These learners seem irrational,
because they rely on relatively short time series in their forecasts. Figure
16 tests this conjecture by presenting some comparisons of the time series
forecast performance for conditional variances for all rules split across the 5
different gain levels used in the variance forecast. If there were no predictabil-
ity in variances, then the minimum gain forecasts should do the best. The
two upper panels display the mean squared error (MSE) and mean absolute
error (MAE) for the 5 variance forecast groups. Forecasts are normalized
by the unconditional value, so a value of 1 corresponds to using the uncon-
ditional variance. The high gain forecast shows forecast improvements near
15 percent. The appeal of high gain variance forecasts in our populations is
therefore driven by the empirical features of the time series. The lower left
figure looks at an estimate of expected utility levels for the different variance
forecasts. It is reported as an annual certainty equivalent return. Again, the
indication of the usefulness of high gain strategies is evident in the figure
since there is no dramatic pull toward small gain variance estimates. There
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are relatively balanced utility levels across all the forecasts.30

Since high gain learners appear to be contributing to market instability
it would be interesting to see if they alone could generate reasonable market
dynamics. In the first experiment of section three, low gain only learners
were shown to converge to a reasonable market equilibrium. What would
happen if only high gain learners were present? To explore this, a reverse of
the first benchmark low gain experiment is performed. Agents with only high
gain, or short half-life rules are used. The set of rules is again concentrated
on 5 different gain levels, but instead of being distributed between 1 and 50
years, they are reduced to a range of 1-5 years only. Figure 17 displays a 100
year period of a run with these gain parameters. The market still displays
significant instability. However, the dynamics do not appear reasonable for
lining up with real data. There are quick bursts in the price level which
suddenly take off, and crash almost as quickly. After sharp decreases, prices
return relatively quickly to a central P/D level. Returns are punctuated
by large tail events, but prolonged periods of high volatility are not evident.
The competing dynamics of learning agents from all gain levels would appear
essential to spread out some of the market instability, making it less dramatic,
and more persistent in all dimensions. This is a critical requirement if one
is interested in modeling deviations from fundamentals which are not just
large, but also persistent.

The second experiment looks at the impact of the adaptive learning com-
ponent of the model. This will be turned off so that agents stay with the
strategy that they start out with. Wealth moves only due to the relative per-
formance of strategies over time. In this case the simulation shows a pattern
similar to that from the original runs in terms of qualitative performance.
The results are summarized in figure 18 which shows all the usual features
of a standard financial returns series.31

The final roubustness check examines the importance of the short AR
trading strategy. This strategy forms short term forecasts using a simple lin-
ear regression on lagged returns. It appears to be somewhat inconsequential
in terms of wealth accumulation. Also, it does not appear to be a founda-

30The reader should be cautioned that this plot must be subject to a large amount of
noise. The key point here is that there will be no dramatic selection drawing wealth to
any forecast, and leaving variance forecasts at all gain levels active in terms of wealth.

31More detailed comparisons of these runs to those with active learning activated is an
interesting question left for future experiments.
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tional strategy in terms of contributing to overall price dynamics. Figure
19 reports the results of eliminating this single strategy, and they are quite
dramatic. The returns exhibit somewhat strange and spiky behavior. The
density plot looks similar to the previous cases, but the autocorrelation pat-
terns are different in a very important way. Now the return series shows
strong positive autocorrelation out to almost 5 lags. The values are on the
order of 0.2 at lag 1 which is very unusual for a financial series. This shows
that while the short AR strategy is only a small part of wealth, it is still
working hard to make sure no obvious trading patterns appear in returns. It
drives short range linear predictability to near zero, and in doing so it almost
puts itself out of business. However, it always remains available, and ready to
arbitrage away any kind of predictability that might appear. It is interesting
that this strategy actually fits well into our traditional assumptions about
the dynamics of strategies in an efficient market. This does not appear to be
working for longer term strategies in this market.

5. Conclusions

This paper has presented results from a new agent-based financial market.
It is argued that this model can play the role of a useful benchmark for
experiments in agent-based finance. It is designed to bridge the gap between
complex “many type” models, with many pieces and parameters, and the
simpler “few type” models, with relatively few strategies.

The model is shown to be rich enough to meet the hurdle of generating
most of the basic stylized facts of asset returns and trading volume. It does
this in a way that is much more amenable to detailed analysis than for some
of the larger more complex models used in the past. However, it maintains a
rich evolutionary flavor which stays close to the spirit of evolutionary finance
and economics. Further, it connects to the important time series dimension
of learning models, and their perception of the past. Much of the observed
dynamics comes from the fact that traders who put relatively large weight on
the recent past are not easy to remove from the population in a evolutionary
struggle for survival.

The results show several interesting features about the set of agents sur-
viving in the market. First, the buy and hold strategy controls a large frac-
tion of wealth, though it is not crucial in actual price setting. Second, the
adaptive and fundamental strategies maintain a large fraction of high gain
learners who are using only recent data in their forecasting updates. For the
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adaptive strategies, this would correspond to short range momentum strate-
gies following recent trends. For the fundamental types, it means they are
weighing recent events heavily in their dividend/price ratio forecast regres-
sions. In terms of volatility estimates, all the strategies, put heavy weight on
the recent past. This seems unusual, and may drive the intensity of the mar-
ket’s sudden price drops. Further work will try to examine the contribution
of this specific form of short-memory in the model, and where it is coming
from.

Agent-based markets offer an important technology for exploring conjec-
tures about evolution and rationality in finance. They allow for computa-
tional experiments which can reveal the underlying dynamics in a world of
heterogeneous and learning agents. Understanding the dynamics of these
markets as thought experiments is necessary for building up our intuition for
what is going on in real markets, and influencing better policy choices.
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Appendix: Price search mechanism

The artificial market is cleared each period by matching the demand for
shares with the supply. Given that agents have chosen their forecasts, and
these forecast rules are fixed in period t, the demand for shares is given as
in equation 26,

Zt,i(Pt) = (1 − λ)αt,i(Pt)
(Pt +Dt)St−1,i +Bt−1,i

Pt
. (35)

It is important to remember that Zt(Pt) includes changes in demand that
recognize both new portfolio decisions that come from maintaining optimal
portfolio fractions at the new price level, and also changes that come from
modifying the optimal portfolio fractions given the new forecasts consistent
with Pt. This will require a numerical solution for the market clearing price.

The algorithm used is a simple binary search procedure which corresponds
to the standard search method from computer science. The search is started
in a range of prices around Pt−1.
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Table 1: Parameter Definitions

Parameter Value
dg 0.0126
σd 0.12
rf 0
γ 3.5
λ 0.0007
I 16000
J 4000
gj [1, 2.5, 7, 18, 50] years
gL 50 years
gu [1, 2.5, 7, 18, 50] years
pσ 0.5
L 5 percent/year
[αL, αH ] [0.05, 0.95]
σε 0.02
MPD 52 weeks
MAR 3
hj [0.05, 0.15]
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Table 2: Weekly Return Statistics

Baseline CRSP VW Weekly IBM Weekly
Mean (percentage) 0.22 0.17 0.26
Std 3.54 2.49 3.40
Skewness −0.77 −0.70 −0.59
Kurtosis 19.63 8.97 12.76
Tail exponent (left) 2.12 3.14 2.98
Tail exponent (right) 2.25 3.43 3.93

35



Table 3: Annual Return Statistics

Baseline Shiller Earnings Shiller Dividends
Mean(P/D) 16.75 15.32 26.62
Std (P/D) 4.76 5.97 13.81
Autocorrelation(1) 0.72 0.68 0.93
Mean(Return) 12.4 7.95
Mean(Log(Return)) 8.33 6.22
Std(Return) 0.26 0.17
Annual Sharpe 0.44 0.30
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Figure 1: Return Summaries: Low gain only
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Figure 2: Return Summaries: All gain baseline
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Figure 3: Price Level Comparison: S&P 500 index versus simulation
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Figure 4: Return Comparison: CRSP value weighted(VW) versus
simulation
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Figure 5: Weekly Return Densities and Gaussian: CRSP VW Index
1926-2009 versus simulation
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Figure 6: Return Autocorrelations: Returns and absolute value of
returns
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Figure 7: P/D Ratios: Annual 1871-2009 versus simulation
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Figure 8: Wealth Fraction Time Series
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Figure 9: Forecast Gain Wealth Distributions
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Figure 10: Volatility Gain Wealth Distributions
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Figure 11: Strategy Fractions
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Figure 12: Strategy Fractions and P/D Coefficient by Gain
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Figure 13: Elasticity, Volume, and Volatility
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Figure 14: Excess Demand Curves: Normal and crash periods
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Figure 15: Dynamics Around Crash Events
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Figure 16: Volatility Forecast Errors and Utility by Volatility Gain
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Figure 17: High Gain Only: Simulation results for gain parameters in the
range [1-5] years only
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Figure 18: Return Summary: No adaptive learning
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Figure 19: Return Summary: No short AR agents
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