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1 Introduction

Over the past two decades much has been learned about the dynamics of models for

financial markets designed around heterogeneous agents. Whether analytic or compu-

tational, they have emphasized some basic properties. Among these are the ability to

amplify the volatility of relatively calm or constant fundamentals, and a demonstration

that convergence to a common rational expectations equilibrium may be a more difficult

task than is often assumed. Beyond these basic theoretical insights, agent-based markets

have demonstrated an ability to replicate certain stylized facts. These include fat tailed

return distributions, persistent volatility, and large, persistent deviations from fundamen-

tal values.1 Some of these common features are not even considered by dynamic stochas-

tic general equilibrium (DSGE) asset pricing models, yet they appear almost generic in

multi-agent models.

Agent-based approaches have been quieter about empirical features at longer hori-

zons. There may be several reasons for this. One is that for univariate time series longer

range features are relatively weak, and not well agreed on. More importantly, most of

facts at longer horizons are related to cross sectional asset pricing models.2 It may also

be true that agent-based models have more difficulty fitting longer horizon features.3 Fi-

nally, almost no papers have tried to fit features at both higher and lower frequencies

simultaneously. Doing this sets a very high standard for model validation and should

help sort through the very crowded space of agent-based approaches to asset pricing.

The goal of this paper is to show that a relatively simple agent-based computational

model introduced in LeBaron (2012) is capable of replicating empirical features at multi-

ple horizons. Some of the longer horizon properties that are matched are not well known,
1 Various surveys of agent-based financial markets discuss many of these papers. These include Hommes (2006), LeBaron (2006),

Chiarella, Dieci & He (2009), Hommes & Wagener (2009), Lux (2009), and more recently, Chen (2012). The number of models capable
of generating fat tailed distributions alone must be enormous.

2 See Cochrane (2011) for some connections between cross sectional and time series relations in asset returns.
3Recently, more papers have appeared which have turned to longer horizons. This includes Boswijk, Hommes & Manzan (2007),

Kouwenberg & Zwinkels (2010), Chiarella, He & Zwinkels (2009), and Chiarella, He, Huang & Zheng (2012). Also, LeBaron (2001a)
began trying to take a realistic dividend process and measured price reversals by looking at price/dividend regressions.
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and they have required building a special long range data series, splicing various series

together and adjusting for share repurchases. The model gives some new insights into the

previous empirical work, by suggesting new places to look for important nonlinearities.

An example of this is a dramatic asymmetry in return momentum that was discovered

first in the model, and then confirmed with financial data.

The model is also simple enough to give some important insights into what is driving

the results. It emphasizes several critical components. The most important of these is the

fact that agents must learn to forecast returns and risk.4 This mechanism allows for very

large movements in the price/dividend ratio due to common changes in risk perception,

while not requiring large shifts in wealth across different strategy types. A second major

feature is the fact that learners are using heterogeneous gain perspectives. They assign

differing weights to past information as it comes in. The critical gain level reflects beliefs

about both the stationarity of the observed times series, and also the signal to noise ratio

of incoming information.5 It is conjectured that multiple gain levels can lead to unusual

time series behavior such as long memory and volatility time asymmetry.6 This paper

demonstrates that they are capable of generating a rich set of empirical features.7

These features include well know facts such as leptokurtic return distributions, persis-

tent volatility, and the leverage effect. Beyond these relatively short horizon features, the

model also displays characteristics which are well known from longer horizon returns

including persistent swings around fundamentals and return momentum and reversals.

Finally, several features are replicated which have not been well documented. These in-

clude nonlinearities in the risk/return relationship, connections between price/dividend
4See LeBaron, Arthur & Palmer (1999) for an early example of this, and Branch & Evans (2011) for a simple model of how this

mechanism could operate.
5 Other papers have considered heterogeneous gain learning. These include Anufriev & Dindo (2010), Honkapohja & Mitra (2006),

Levy, Levy & Solomon (1994), Mitra (2005), Thurner, Dockner & Gaunersdorfer (2002), and Zschischang & Lux (2001). LeBaron (2002)
considers the ecological battle between learners with differing perspectives, and how short term learning perspectives can survive by
creating an environment in which they thrive.

6 See Corsi (2009), Dacorogna, Gencay, Muller, Olsen & Pictet (2001), Ding, Granger & Engle (1993) and LeBaron (2001b) for
empirical examples. All are probably connected in some way to Granger’s aggregation theories in Granger (1980).

7LeBaron (2013) deals directly with the necessity of multiple gain levels, and shows that without them simulated markets generate
relatively unrealistic pricing time series.
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ratios and volatility, and asymmetries between short and long horizon volatility. This

long list sets a high threshold in terms of model validation, and presents a strong case

for many of the internal features of this model, especially the aggregation across different

learning gain levels.

Section 2 will briefly describe the model. Section 3 describes the empirical results.

There is a description of the data set used, some basic empirical features common to

many agent-based models, and then the more unusual empirical results that are specific

to this paper. Section 4 concludes.

2 Model description

This section will briefly describe the structure of the model. It combines components from

many parts of the learning literature. The goal is to build a heterogeneous agent asset

market which is as parsimonious as possible, but can still do a good job of replicating

financial market features. Also, its inner workings should be simple enough for detailed

analysis, meet a general plausibility test, and yet be rich enough to understand several

aspects of how wealth moves around in a learning investment environment.

2.1 Assets

The market consists of only two assets. First, there is a risky asset paying a stochastic

dividend,

dt+1 = dg + dt + εt, (1)

where dt is the log of the dividend paid at time t. Time will be incremented in units of

weeks. Lower case variables will represent logs of the corresponding variables, so the

actual dividend is given by,

Dt = edt . (2)
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The shocks to dividends are given by εt which is independent over time, and follows

a Gaussian distribution with zero mean, and variance, σ2
d , that will be calibrated to ac-

tual long run dividends from the U.S. The dividend growth rate would then be given by

eg+(1/2)σ2
d which is approximately Dg = dg + (1/2)σ2

d .

The return on the stock with dividend at date t is given by

Rt =
Pt + Dt − Pt−1

Pt−1
, (3)

where Pt is the price of the stock at time t. Timing in the market is critical. Dividends are

paid at the beginning of time period t. Both Pt and Dt are part of the information set used

in forecasting future returns, Rt+1. There are I individual agents in the model indexed by

i. The total supply of shares is fixed, and set to unity,

I

∑
i=1

St,i = 1. (4)

There is also a risk free asset that is available in infinite supply, with agent i holding

Bt,i units at time t. The risk free asset pays a rate of R f which will be assumed to be zero.

This is done for two important reasons. It limits the injection of outside resources to the

dividend process only. Also, it allows for an interpretation of this as a model with a per-

fectly storable consumption good along with the risky asset. The standard intertemporal

budget constraint holds for each agent i,

Wt,i = PtSt,i + Bt,i + Ct,i = (Pt + Dt)St−1,i + (1 + R f )Bt−1,i, (5)

where Wt,i represents the wealth at time t for agent i.
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2.2 Preferences

Portfolio choices in the model are determined by a simple myopic power utility function

in future wealth. The agent’s portfolio problem corresponds to,

maxαt,i

Ei
tW

1−γ
t+1,i

1−γ , (6)

st. Wt+1,i = (1 + Rp
t+1,i)(Wt,i − Ct,i), (7)

Rp
t+1,i = αt,iRt+1 + (1− αt,i)R f . (8)

αt,i represents agent i’s fraction of savings (W − C) in the risky asset. It is well known

that the solution to this problem yields an optimal portfolio weight given by,

αt,i =
Ei

t(rt+1)− r f +
1
2 σ2

t,i

γσ2
t,i

+ εt,i, (9)

with rt = log(1+ Rt), r f = log(1+ R f ), σ2
t,i is agent i’s estimate of the conditional variance

at time t, and εt,i is a normally distributed individual shock designed to make sure that

there is some small amount of heterogeneity to keep trade operating.8

In the current version of the model neither leverage nor short sales are allowed. The

fractional demand is restricted to αt,i to αL ≤ αt,i ≤ αH. The addition of both these features

is important, but adds significant model complexity. Adding either leverage or short sales

forces decisions on how to model agent bankruptcy and borrowing constraints. Both of

these are not trivial, and involve many possible implementation details.
8The derivation of this follows Campbell & Viceira (2002). It involves taking a Taylor series approximation for the log portfolio

return. The shock, εt,i , is distributed N(0,σ2
ε ).
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One further modification is that portfolio choices are tapered in their extremes.

α̃t,i =


αt,i 0.1≤ αt,i ≤ 0.9

0.9 + 0.02(αt,i − 0.9) αt,i > 0.9

0.1 + 0.02(αt,i − 0.1) αt,i < 0.1

(10)

This shrinks the extreme levels of α to the central range, and can be viewed as a slight be-

havioral modification that agents require extra empirical evidence to push their portfolios

weights to the most extreme positions. This has little impact on most of the simulation

runs, and it could be easily removed without affecting most runs. However, it is im-

portant in near rational expectations benchmarks which cause the agents to hold almost

all equity since volatility is driven to very low levels.9 The above restriction keeps the

agents in the interior of their portfolio decision and helps the market to converge to a

well defined equilibrium in this case.10

Consumption will be assumed to be a constant fraction of wealth, λ. This is identical

over agents, and constant over time. The intertemporal budget constraint is therefore

given by

Wt+1,i = (1 + Rp
t+1)(1− λ)Wt,i. (11)

This also gives the current period budget constraint,

PtSt,i + Bt,i = (1− λ)((Pt + Dt)St−1,i + (1 + R f )Bt−1,i). (12)

This simplified portfolio strategy will be used throughout the chapter. It is important

to note that the fixed consumption/wealth, myopic strategy approach given here would

be optimal in a standard intertemporal model for consumption portfolio choice subject

to two key assumptions. First, the intertemporal elasticity of substitution would have to
9This is an appearance of the equity premium puzzle when this model is near the rational expectations equilibrium.

10It also corresponds to the neural network based strategies used in LeBaron (2001a), but in a crude piecewise linear fashion.
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be unity to fix the consumption wealth ratio, and second, the correlation between unex-

pected returns and certain state variables would have to be zero to eliminate the demand

for intertemporal hedging.11

2.3 Expected Return Forecasts

The basic problem faced by agents is to forecast both expected returns and the conditional

variance one period into the future. This section will describe the forecasting tools used

for expected returns. A forecast strategy, indexed by j, is a method for generating an

expected return forecast Ej(rt+1). Agents, indexed by i, will choose forecast rules, indexed

by j, according to expected utility objectives.

All the forecasts will use long range forecasts of expected values using constant gain

learning algorithms equipped with the minimum gain level, denoted gL.

r̄t = (1− gL)r̄t−1 + gLrt (13)

pdt = (1− gL)pdt−1 + gL pdt−1 (14)

σ̄2
t = (1− gL)σ̄

2
t−1 + gL(rt − r̄t)

2 (15)

σ̄2
pd,t = (1− gL)σ̄

2
pd,t−1 + gL(pdt − p̄dt)

2 (16)

∆pt = (1− gL)∆pt−1 + gL∆pt (17)
11See Campbell & Viceira (1999) for the basic framework. Also, see Giovannini & Weil (1989) for early work on determining con-

ditions for myopic portfolio decisions. Hedging demands would only impose a constant shift on the optimal portfolio, so it is an
interesting question how much of an impact this might have on the results.
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∆pt = pt − pt−1 (18)

The log price/dividend ratio is given by pdt = log(Pt/Dt). The forecasts used will

combine four linear forecasts drawn from well known forecast families. The first of these

is a form of adaptive expectations which corresponds to,

f j
t = f j

t−1 + gj(rt − f j
t−1). (19)

Forecasts of expected returns are dynamically adjusted based on the latest forecast error.

This forecast format is simple and generic. It has roots connected to adaptive expecta-

tions, momentum, trend following technical trading, and Kalman filtering.12 The critical

parameter is the gain level represented by gj. This determines the weight that agents put

on recent returns and how this impacts their expectations of the future. Forecasts with

a large range of gain parameters will compete against each other in the market. Finally,

this forecast will the trimmed in that it is restricted to stay between the values of [−hj, hj].

These will be set to relatively large values, and are randomly distributed across rules.

The second forecasting rule is based on a classic fundamental strategy. It is based on

the log linear approximation for returns,13

rt+1 ≈ k + ρpt+1 + (1− ρ)dt+1 − pt, (20)

ρ =
1

1 + e−(p−d)
k = − log(ρ)− (1− ρ) log(

1
ρ
− 1). (21)

This approximation allows for a separation of forecasts into a dividend and price com-
12See Cagan (1956), Friedman (1956), Muth (1960), and Phelps (1967) for original applications. A nice summary of the connections

between Kalman filtering, adaptive expectations, and recursive least squares is given in Sargent (1999). A recent paper demonstrating
a more general connection to state space models and expected returns is Pastor & Stambaugh (2009). Empirically, Frankel & Froot
(1987) and Taylor & Allen (1992) provide evidence that at least some forecasters do use these rules. Finally, Hommes (2011) surveys
some of the laboratory evidence that experimental subjects also use extrapolative methods for forecasting time series.

13 See Campbell, Lo & MacKinlay (1996) for a textbook exposition.
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ponent. Agents are assumed to have observed the random walk dividend process, and

dt+1 is easy to forecast. The mapping of dividends into price movements is much more

complicated, and here they resort to a linear regression of ∆pt+1 = pt+1 − pt on current

price dividend ratios, pdt.

f j
t = Et,j(∆pt+1) = ∆pt + β

j
t(pdt − pdt). (22)

where pdt is log(Pt/Dt), and

Et,j(pt+1) = f j
t + pt (23)

Et,j(dt+1) = dt (24)

Et,jrt+1 ≈ k + ρEt,j pt+1 + (1− ρ)Et,jdt+1 − pt. (25)

The third forecast rule will be based on simple linear regressions. It is a predictor of

returns at time t given by

f j
t = r̄t +

MAR−1

∑
i=0

β
j
t,i(rt−i − r̄t) (26)

This strategy works to eliminate short range autocorrelations in returns series through its

behavior, and MAR = 3 for all runs in this chapter. It will be referred to as the “short range

arbitrage strategy.”14

The previous two rules will be estimated each period using recursive least squares.

There are many examples of this for financial market learning.15 The key difference is

that this model will stress heterogeneity in the learning algorithms with wealth shifting
14These simple forecasting agents who use only recent returns in their models, fighting against return correlations, share some

features with the momentum traders of Hong & Stein (1999).
15 See Evans & Honkapohja (2001) for many examples, and also very extensive descriptions of recursive least squares learning

methods.

9



across many different rules, each using a different gain parameter in its online updating.16

The final rule is a buy and hold strategy using the long run mean, r̄t, for the expected

return, and the long run variance, σ̄2
t , as the variance estimate. This portfolio fraction

is then determined by the demand equation used by the other forecasting rules. This

gives a useful passive benchmark strategy which can be monitored for relative wealth

accumulation in comparison with the other active strategies.

2.4 Regression Updates

Forecasting rules are continually updated. The adaptive forecast only involves fixed fore-

cast parameters, so its updates are trivial, requiring only the recent return. The two re-

gression forecasts are updated each period using recursive least squares.

All the rules assume a constant gain parameter, but each rule in the family corresponds

to a different gain level. This again corresponds to varying weights for the forecasts look-

ing at past data.

The fundamental regression is updated according to,

β
j
t+1 = β

j
t +

gj

σ̄2
pd,t

(pdt−1 − p̄dt−1)ut,j (27)

ut,j = ((pt − pt−1)− f j,t−1)

Also, β
j
t is restricted to be between 0 and −0.05. The zero upper bound on β makes sure

this strategy is mean reverting, with an overall stabilizing impact on the market.

For the lagged return regression the update follows,

β
j
t+1,i = β

j
t,i +

gj

σ̄2
r,t
(rt−i − r̄t−i)ut,j, (28)

ut,j = (rt − f j
t )

16Another recent model stressing heterogeneity in an OLS learning environment is Georges (2008) in which OLS learning rules are
updated asynchronously.
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where gj is again the critical gain parameter, and it varies across forecast rules.17

2.5 Variance Forecasts

The optimal portfolio choice demands a forecast of the conditional variance as well as the

conditional mean.18 The variance forecasts will be generated from adaptive expectations

as in,

σ̂2
t+1,j = σ̂2

t,j + gj,σ(e2
t,j − σ̂2

t,j) (29)

e2
t,j = (rt − f j

t−1)
2, (30)

where e2
t,j is the squared forecast error at time t, for rule j. The above conditional variance

estimate is used for all the rules. There is no attempt to develop a wide range of variance

forecasting rules, reflecting the fact that while there may be many ways to estimate a con-

ditional variance, they often produce similar results.19 This forecast method has many

useful characteristics as a benchmark forecast. First, it is essentially an adaptive expecta-

tions forecast on second moments, and therefore shares a functional form similar to that

for the adaptive expectations family of return forecasts. Second, it is closely related to

other familiar conditional variance estimates.20 Finally, the gain level for the variance in

a forecast rule, gj,σ, is allowed to be different from that used in the mean expectations, gj.

This allows for rules to have a different time series perspective on returns and volatility.

Finally, agents do not update their estimates of the variance each period. They do
17This format for multivariate updating is only an approximation to the true recursive estimation procedure. It is assuming that the

variance/covariance matrix of returns is diagonal. Generated returns in the model are close to uncorrelated, so this approximation is
reasonable. This is done to avoid performing many costly matrix inversions. Also, the standard recursive least squares is simplified by
using the long run estimates for the mean in both regressions. Only the linear coefficient is estimated with a heterogeneous learning
model. This is done to simplify the learning model, and concentrate heterogeneity on the linear parameters, β

j
t.

18 Several other papers have explored the dynamics of risk and return forecasting. This includes Branch & Evans (2011) and
Gaunersdorfer (2000). In LeBaron (2001a) risk is implicitly considered through the utility function and portfolio returns. Obviously,
methods that parameterize risk in the variance may miss other components of the return distribution that agents care about, but the
gain in tractability is important.

19See Nelson (1992) for early work on this topic.
20 See Bollerslev, Engle & Nelson (1995) or Andersen, Bollerslev, Christoffersen & Diebold (2006) for surveys of the large literature

on volatility modeling.
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this stochastically by updating their variance estimate each period with probability 0.25.

This is done for several reasons. First it introduces more heterogeneity into the variance

estimation part of the model since its construction yields a lot of similarity in variance

forecasts. Also, if variance updating occurred simultaneous to return forecasts, the mar-

ket would be unstable. Spirals of ever falling prices, and increasing variance estimates

would be impossible to avoid in this case.

2.6 Market Clearing

The market is cleared by setting the individual share demands equal to the aggregate

share supply of unity,

1 =
I

∑
i=1

Zt,i(Pt). (31)

Writing the demand for shares as its fraction of current wealth, remembering that αt,i is a

function of the current price gives

PtZt,i = (1− λ)αt,i(Pt)Wt,i, (32)

Zt,i(Pt) = (1− λ)αt,i(Pt)
(Pt + Dt)St−1,i + Bt−1,i

Pt
. (33)

This market is cleared for the current price level Pt. This needs to be done numeri-

cally given the complexities of the various demand functions and forecasts, and also the

boundary conditions on αt,i.21 It is important to note again, that forecasts are conditional

on the price at time t, so the market clearing involves finding a price which clears the mar-

ket for all agent demands, allowing these demands to be conditioned on their forecasts of

Rt+1 given the current price and dividend. 22

21A binary search is used to find the market clearing price using starting information from Pt−1.
22 The current price determines Rt which is an input into both the adaptive, and short AR forecasts. Also, the price level Pt enters

into the Pt/Dt ratio which is required for the fundamental forecasts. All forecasts are updated with this time t information in the
market clearing process.
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2.7 Gain Levels

An important design question for the simulation is how to set the range of gain levels for

the various forecast rules. These will determine the dynamics of forecasts. Given that this

is an entire distribution of values it will be impossible to accomplish much in terms of

sensitivity analysis on this. Therefore, a reasonable mechanism will be used to generate

these, and this will be used in all the simulations.

Gain levels will be thought of using their half-life equivalents, since the gain numbers

themselves do not offer much in the way of economic or forecasting intuition. Half lives

can be thought of using the simple exponential forecast mechanism with

f j
t+1 = (1− gj) f j

t + gjet+1. (34)

This easily maps to the simple exponential forecast rule,

ft =
∞

∑
k=1

(1− gj)
ket−k. (35)

The half-life of this forecast corresponds to the number of periods, mh, which drops the

weight to 1/2,
1
2
= (1− gj)

mh , (36)

or

gj = 1− 2−1/mh . (37)

The distribution of mh then is the key object of choice here. It is chosen so that log2(mh)

is distributed uniformly between a given minimum and maximum value. The gain levels

are further simplified to use only 5 discrete values. These are given in table 2. These

distributions are used for all forecasting rules. All forecast rules need a gain both for the

expected return forecast, and the variance forecast. These will be chosen independently
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from each other. This allows for agents to have differing perspectives on the importance

of past data for the expected return and variance processes.

2.8 Adaptive rule selection

The design of the models used here allows for both passive and active learning. Passive

learning corresponds to the long term evolution of wealth across strategies. Beyond pas-

sive learning, the model allows for active learning, or adaptive rule selection. This mech-

anism addresses the fact that agents will seek out strategies which best optimize their

estimated objective functions. In this sense it is a form of adaptive utility maximization.

Implementing such a learning process opens a large number of design questions. This

chapter will stay with a relatively simple implementation. The first question is how to

deal with estimating expected utility. Expected utility will be estimated using an expo-

nentially weighted average over the recent past,

Ût,j = Ût−1,j + gi
u(Ut,j − Ût−1,j), (38)

where Ut,j is the realized utility for rule j received at time t. This corresponds to,

Ut,j =
1

1− γ
(1 + Rp

t,j)
(1−γ) (39)

with Rp
t,j the portfolio holdings of rule j at time t. Each rule reports this value for the 5

discrete agent gain parameters, gi
u. Agents choose rules optimally using the objective that

corresponds to their specific perspective on the past, gi
u, which is a fixed characteristic.

The gain parameter gi
u follows the same discrete distribution as that for the expected

return and variance forecasts.

The final component for the learning dynamic is how the agents make the decision to

change rules. The mechanism is simple, but designed to capture a kind of heterogeneous
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updating that seems plausible. Each period a certain fraction, L, of agents is chosen at

random. Each one randomly chooses a new rule out of the set of all rules. If this rule

exceeds the current one in terms of estimated expected utility, then the agent switches

forecasting rules.

3 Empirical results

3.1 Data description

This paper uses a data set for U.S. stock returns and dividends as a comparison. It is

designed both to cover as long a horizon as is reasonably possible for dividends, prices,

and return volatility. It merges three different data sets. For the period from 1926 through

2012, the benchmark CRSP data is used with the value weighted index as the proxy for

market returns, and interest rates given by the 90 day U.S. treasury bill. The difference

between the returns on the index with and without dividends are used to construct price

dividend ratios as is standard in the finance literature. Also, the daily returns data are

used to build a monthly volatility series with a simple monthly realized volatility.23 For

the period from 1871 to 1925 the data set constructed by Shiller is used, which available

at his website.24 This includes stock prices, dividends, interest rates, and inflation. The

Shiller data is only available monthly frequency, so it is also augmented with an early

daily series from Schwert which is used to generate early monthly realized volatilities

back to 1886.25 For most results the range of prices, returns and volatility will cover 1886-

2012 with a splice into the standard CRSP series in 1926.

The real dividend series in the Shiller data set is used for calibration. Figure 1 plots the

price dividend ratio for the entire range of the data set. The solid line gives ratios which
23This method is very commonly used with intraday data, but was originally used in French, Schwert & Stambaugh (1987) at the

daily frequency.
24 This is the main input for Shiller (2000), and many papers.
25Schwert (1990) gives extensive details on the construction of this series which is available at his website.
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are adjusted for share repurchase payouts, the dashed line is the raw dividend series. For

most of the early data there is no difference, but in later years it is clear that ignoring

share repurchase payouts is a problem. The payout adjusted series could be argued as

reasonably stationary, while the unadjusted series moves into a very different territory in

the 1990’s and beyond.26

When thinking about a single candidate for the aggregate fundamental series for ag-

gregate stock returns there are many candidates. Table 1 compares some of the available

options. This most obvious would be the aggregate dividend series which is taken from

the Shiller data set. It is presented in both regular form and adjusted for payouts. The

latter case shifts its growth rate close to a real two percent growth rate, putting it more in

line with the standard macro measures of the post-war U.S. economy. It should be noted

that volatility of aggregate dividends falls well above that of other measures of aggregate

income flows. In particular, consumption is roughly one fifth the annual standard devia-

tion of dividends. This leaves one with a bit of a dilemma in terms of calibration, since a

key feature should be the model’s ability to magnify the variability of these rather quiet

fundamentals. In this paper, the philosophy will be to take the adjusted dividend as the

best measure of the of the aggregate cash flow. However, aggregate information suggests

that lowering its volatility might be a sensible experiment.

3.2 Basic features

The basic parameters for the simulation are given in table 2. This table gives the number

of agents and rules, and the basic simulation parameters. Results will be presented for

two different simulation specifications. First, the multiple gain runs correspond to a full
26The adjustment factor used is from Boudoukh, Michaely, Richardson & Roberts (2007). The adjustment used here

augments dividends with total share repurchases. There are several other measures one might use, none of which
perfectly accounts for the attempts of firms to get cash into shareholders hands. Boudoukh et al. (2007) try sev-
eral, and give a lot of discussion on the debate about which measure one should use. Their data ends in 2003,
and it is augmented with data from S&P which can be found on the web at, http://finance.yahoo.com/news/
p-500-stock-buybacks-increase-133000759.html and http://www.indexuniverse.com/publications/journalofindexes/
joi-articles/9431-the-importance-of-dividends-and-buybacks-ratios-for-gauging-equity-values.html. The annual
data is interpolated to a monthly frequency.
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run using all the different gain levels across forecast rules and agents. These runs serve as

a benchmark for replicating actual returns in the U.S. data set. The simulation is allowed

to run for 200,000 weeks, and the last 100,000 weeks are used in most of the time series

analysis, giving approximately 1900 years of data.

A figure showing the final 100 years of a run is presented in figure 2. The upper panel

shows the price dividend ratio which is moving through time, displaying large and per-

sistent swings. The pattern is somewhat irregular with no clear periodicity or maximum

or minimum level which would allow investors to call the top or the bottom. The mid-

dle panel presents the weekly returns corresponding to the price/dividend ratios. These

give temporal pockets of high and low volatility common in most financial time series.

The lower panel displays trading volume which also moves counter cyclically to the P/D

ratio, and is strongly correlated with the level of volatility in the return series.

The overall structure of the agent strategies is presented in figure 3. This graph presents

the wealth fractions for the various forecast families over the entire 200,000 week run. In

terms of long range patterns some key features are very obvious. First, the short range

arbitrage strategy is nearly driven out of the market. It essentially does this to itself by

eliminating all short run predictability. Second, the fraction of adaptive or trend follow-

ing strategies is significantly larger than the fundamental strategies. They control close

to 40 percent of the wealth, and the fundamental types only hold about 10 percent. This

relative wealth comparison for destabilizing and stabilizing strategies is important for the

market dynamics. It is also interesting to note that the passive buy and hold strategy con-

trols almost 50 percent of the wealth. This is consistent with some results from the model

that suggest that predictability in the series is not too strong. Passive strategies therefore

hold their own against the more active ones.27

The second set of runs is a counter factual run with the gain levels set to very long

half lives of about 100 years. This market converges to something very different from the
27Detailed analysis of the underlying market fractions and wealth distributions are presented in LeBaron (2012).
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multiple gain runs. It is again run for 200,000 weeks, and the final 100 years are summa-

rized in figure 4. The three panels display P/D ratios, returns, and trading volume. It is

obvious this run is very different from the previous one. The price dividend ratio stays

relatively constant around a level of 35. Returns are uniform with no dramatic changes in

volatility. Trading volume is also flat, and more than an order of magnitude lower than

that in the multiple gain benchmark. This casual picture appears to show a market which

has converged to something close to a simple rational expectations equilibrium.

Table 3 presents basic summary statistics for the data and the two different simulation

runs. The multiple gain simulations give reasonable representations for the long range

properties of the mean and standard deviation of excess returns. They are slightly high in

both instances.28 The small gain comparison run generates returns which are too low, and

a standard deviation which is less than half that of the data. In this paper the dynamics of

the fundamental series are crucial to the market. The lower part of the table presents the

mean and standard deviation for the price/dividend ratio. The multiple gain simulation

is closely aligned with the payout adjusted levels from the long range data set. The small

gain run confirms the figure by showing a variability in the price/dividend ratio which is

about 1/3 the actual data. This lower risk in the aggregate series gets reflected in a higher

price for the risky asset and a higher price/dividend ratio of 37 which compares to 23 in

the data.

The next figures and table briefly examine some of the higher frequency (weekly) prop-

erties of the time series. Table 4 shows that the data and multiple gain simulations gen-

erate some negative skew, and large kurtosis. For the small gain runs there is very little

evidence for any deviation from Gaussian returns. The skewness is zero, and and the

kurtosis is only 3.4. Figures 5 and 6 display histograms for weekly returns for the simu-

lations and the data, respectively. Both show features consistent with the table of fat tails,
28 The volatility in many simulation runs is often too high relative to aggregate data. One key reason for this is that the simulated

market is driven by a single stock which is traded by all the agents. There is no opportunity to smooth out any of the trading variability
across stocks as there is in real markets where the benchmark is an average over many stocks.
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and some negative skewness. Results for the small gain runs are consistent with the table

in that they are independent and close to Gaussian. For brevity they will no longer be

included in the results.

Figures 7 and 8 continue with two other well known stylized facts of financial time se-

ries and agent-based markets. In both cases monthly data is used to stay consistent with

the long range theme of the paper, and for comparisons with results presented in later sec-

tions. Monthly return autocorrelations in figure 7 show very little evidence for any linear

structure in either the data or the simulations as should be expected.29 The volatility cor-

relations in figure 8 are a little different from what is often used. The monthly volatility

series are built as realized volatility values using the underlying higher frequency series.

In the case of the data these are daily returns, and for the simulations weekly returns.

These measures are generally more accurate than simple squared or absolute returns. In

both cases the figure displays the large and highly persistent nature of volatility. Positive

autocorrelations go out for nearly two years, and show a slow drop off which is charac-

teristic of a long memory process.

The features presented so far are not new. They simply show that like many other

agent-based models, this one is able to generate returns which follow the basic stylized

facts in distributions and persistence. Most of these are relatively short horizon, but it

should be noted that the long memory aspect of volatility demonstrates that it spans

many time scales from short to long. The next section moves on to more details on longer

horizon aspects of the data. Many of these have not previously been reported or tested in

agent-based models.
29For the simulations much of the short range behavior is driven by the short range arbitrage types who work hard to eliminate

correlated returns.
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3.3 Nonlinear features

This section turns to more long range features, and compares simulation results with

those from the long range merged data set. All of the simulations use the last 100,000

weeks (approximately 1900 years) from a 200,000 week simulation, and the data go from

1886 through 2012. In most cases a nonparametric regression will be estimated to see if

there are any interesting nonlinear features in the model, and if there is any empirical

support for these.

The first set of results are not particularly new. Once it is clear that prices are deviating

from some fundamental for significant periods of time, then predictive regressions based

on these deviations have to have some value.30 Table 5 presents simple linear regressions

at two different forecasting horizons, one quarter, and one year. As is common in this lit-

erature the future excess returns are regressed on the current log price/dividend ratio.31

For the data the results are consistent with values from the literature. The coefficients are

negative and significant indicating the presence of mean reversion. Also, for the data the

estimated R-squared is only modest with a value of 0.01 for quarterly forecasts, and rising

to 0.07 for annual excess return forecasts. The simulations provide qualitative alignment

with these values, but show larger amounts of predictability. The coefficients are highly

significant which is probably due both to cleaner mean reversion, and a longer sample.

The quarterly and annual R-squared’s are now 0.05, and 0.20. Even though these values

are larger than the R-squared’s estimated on the data, it is interesting that with a simu-

lated large sample, there is still a large amount of imprecision in long range forecasts.

The next set of results uses a nonparametric kernel regression to see if there are any

nonlinear connections in either model or the data. The method used is relatively standard
30 See Campbell & Shiller (1988) for the early work. Cochrane (2008) is a good demonstration of the predictability of returns and

cash flows and how they are connected. However, the out of sample use of these predictors has often been questioned, Goyal & Welch
(2003) and Fisher & Statman (2006). Also, see Pettenuzzo, Timmerman & Valkanov (2014 forthcoming) for some positive evidence
predictability using a Bayesian approach. Lettau & Ludvigson (2010) is a very complete survey on this subject.

31 Estimation is done using overlapping data in both cases. For the simulations, given the large amount of data, one could shift to
nonoverlapping samples without changing the results.
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and straightforward. A Gaussian kernel will be applied in a simple bivariate regression

of y on x. The key parameter in this setup is the bandwidth. The bandwidth will be

chosen using randomized cross validation. The sample is split randomly into estimation

and testing samples using an (80,20) split. The model fit is estimated with mean absolute

error in the test partition with fitted values coming from the estimation subsample. The

new feature used here will be to estimate the optimal bandwidth using the lengthy sim-

ulation series, and to apply this same bandwidth for the much shorter U.S. data series.

This is essentially using the simulation as a model specification detection tool, but then

reestimating parameters for the data.

Figure 9 shows the results of the nonparametric regression for the model and data for

the one year excess return forecast. The conditional returns are surprisingly similar in

both cases, and also very near linear. It is probably unlikely that much improvement

would come from moving to a nonlinear forecasting model in either case. It is also com-

forting that even though the model generates slightly different regression coefficients it is

very close on this more detailed specification test.

Regressing long run returns is very standard in the finance literature. Figure 2 sug-

gests another strong relationship in the model. Return volatility appears to move oppo-

site to the price/dividend ratio, with volatility low at high prices, and high when the

market falls to new low levels. This is consistent with a general notion of overconfi-

dence, or under assessment of risk, at the top and over assessment of risk at a market

bottom. To test this more carefully the within month volatility is compared to the end of

month price/dividend ratio, examining the price/dividend relative to its recently com-

pleted volatility level. This is obviously a completely endogenous relationship, and not

much should be assumed from this from a predictive or causality perspective.32

Simple OLS results are presented in table 6. Results are given for both the merged data
32 This is really no reason the regression could not be done in the other direction. These should be viewed as a form of internal

moment conditions more than a simple or nonparametric regression.
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and the model. Also, it is common to look at logged volatility which has a generally near

Gaussian symmetric distribution, so the regression is run on both raw and logged volatil-

ity series. In all cases there is a negative relationship indicating that volatility is generally

low near the top of a P/D run up. For the data, the R-squared’s are very small. Only 0.01

for the variance, and increasing to 0.12 for the log volatility series. The simulation again

increases these to 0.28 and 0.34 respectively. This result is clearly much stronger in the

simulated series than in the actual, but it is moving in the same direction.

The nature and shape of this relationship is again explored with a kernel regression in

figure 10. This shows more nonlinear features than the previous kernel regression. For the

simulation, the relationship is strong and monotonic with almost a factor of ten change

in conditional volatility from the high to the low in the market. There is some weak

indication for a slight nonlinear kink in this relationship. Over the low P/D the data

generally follow this pattern. However, for extremely high P/D ratios the sign changes

and the conditional variance actually rises. This is an interesting deviation from the model

and needs to be further explored.33

Another important feature of financial returns series is the asymmetric impact of lagged

returns on future volatility. Originally discovered in Black (1976) and Christie (1982), it

is often referred to as the “leverage effect” because it can be connected to debt equity ra-

tios and market valuation. The basic feature is that past price decreases lead to a greater

impact on future variances than price increases. In other words, volatility tends to rise in

falling markets.34 Some form of this can be seen graphically for the simulation in 2, but

how well does this line up with the data? Figure 11 shows the kernel regression of future

monthly variance on lagged monthly return. Two dramatic features emerge in the figure.

First, the simulations and the data are remarkably similar here. Second, they both show
33 It should be noted that at the extremes of the kernel regression the data becomes relatively sparse and confidence bands would

expand, so results at very high P/D ratios should be viewed with some caution.
34Hasanhodzic & Lo (2011) dramatically demonstrate that this empirical feature probably has nothing to do with leverage. This also

drives asymmetric GARCH models such as Nelson (1991) and Glosten, Jagannathan & Runkle (1993).
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the strong asymmetry between returns and future volatility. In both cases a five percent

fall in the market is connected with almost twice the level of conditional future variance.

This nonparametric curve is referred to as the “news impact curve” in Engle & Ng (1993),

where similar patterns are observed for equity returns.

Modern finance has been dominated by the construction of multi factor models. One

of these factors, momentum, stands out as being a little different from the others. It is

very simple, and not terribly well founded in any economic model of risk. It is based

on the medium range (about half a year) persistence of returns.35 Momentum is obvi-

ously tied to other trend following strategies such as moving averages, but its systematic

use of the cross section is a much better way to implement this.36 Standard momentum

tests construct portfolios based on lagged six month returns, then they skip a month, and

record results over the next six months. Often this is referred to as a (6− 1− 6) strat-

egy. Without a cross section the results are presented purely in a time series context by

looking at future returns conditioned on the previous six month returns (subject to skip-

ping a month). Figure 12 compares the simulations to the actual data. Both display a

very interesting non monotonic relationship. Over the positive region of lagged returns

they both show a consistent positive connection with future returns as the momentum

effect predicts. However, moving into negative returns one observes a reversal in both

simulation and data. Large falls in the market eventually show up as conditional rever-

sals (increased conditional returns). This again feels consistent with figure 2 where the

upward movements in the market are long and drawn out, generating a large amount of

possible momentum. Falls in the market are relatively short lived and quickly reverse.

This suggests a pattern where persistence and trends are stronger on the longer up-

swings in the market when volatility is lower. It is possible that this feature may show up
35 See Chan, Jegadeesh & Lakonishok (1996) or Jegadeesh & Titman (1993) for early references. See Carhart (1997) for the evidence

that momentum is connected across the cross section in interesting ways, and is occasionally used as a fourth factor in standard asset
pricing models.

36 See Brock, Lakonishok & LeBaron (1992) for time series evidence of moving average rules which are related to momentum, and
Moskowitz, Ooi & Pedersen (2012) and Da, Gurun & Warachka (2014 forthcoming) for the time series properties of more traditional
return momentum strategies.
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in other ways. Previously it has been shown that for some financial series the conditional

autocorrelations change in relation to past volatility levels.37 When volatility is low con-

ditional return autocorrelations are low, and when volatility is high they fall to near zero,

or even negative values for various equity and foreign exchange time series. Figure 13 es-

timates these connections at much longer horizons than those used previously, and using

the kernel regressions used in the previous figures. The return variance estimated over

the past three months is used for a volatility measure, and the return autocorrelation is

estimated over the following three months. These values are estimated with daily data for

the returns, and with weekly data for the simulations.38 The figure shows the clear down-

ward pattern for both series. It is stronger for the U.S. data set which goes from about 0.15

to near zero from the highest levels of volatility. The simulation presents a more modest

reduction from 0.12 to 0.08. The feature appears to be present in the simulated model, but

at a much less significant level.

There may be many causes for this more muted impact. First, the use of weekly data

has to have some impact on these values. Second, and probably most important, the ac-

tual data is based on an index which can have many interesting lead lag patterns across

different stocks.39 The simulation is based on a single stock, with one key strategy de-

signed to eliminate short range autocorrelations.

Another interesting puzzle in long range returns is the lack of solid time series evi-

dence for a consistent estimate for a positive connection between risk and future excess

returns. This issue shows up in models such as the GARCH-M which often show very

weak and unstable estimates on the parameter related to conditional expected returns.

It has recently reappeared in Rossi & Timmermann (2010) where the authors use some

advanced machine learning technology to demonstrate the risk return relationship may
37For example see LeBaron (1992) and Bianco, Corsi & Reno (2009).
38The very long range nature of this test is done both to keep with the spirit of this paper, and also because estimating correlations

with weekly data requires a reasonable sample size. Three months still only yields 12 weeks to estimate the conditional correlation for
the simulations.

39Non synchronous trading is one of the most important of these.
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be nonlinear. Figure 14 examines this relationship for both simulation and data. Ex-

cess returns from the future six months are conditioned on the previous three months of

volatility information. The estimation is done using the actual variance rather than the

logged variance since the theoretical relationship should be between variance and return

for most models, and not logged variance. This does pose a problem since the distribution

is highly skewed, and for large variances, the samples used are getting small. The graph

shows features similar to those reported by Rossi & Timmermann (2010) with a strongly

nonmonotonic relation for risk and return. At the lower level of conditional variances

risk and return are positively related, as they should be, but this relationship reverses

sign for larger volatility levels. The positive connection should be almost obvious for

the agent-based model. Here, large volatility over the recent quarter will impact condi-

tional variance estimates, leading to stronger discounts in asset prices and reduced P/D

ratios. Naturally, this is connected to higher conditional excess returns going forward.

The change in sign in this relationship is still more complex for both data and model to

explain. The best possible explanation (at least for the simulations) is that when volatility

is at its highest levels, the market is actually falling. The simulated market rarely falls in

one period, and takes a few weeks to finally adjust, so the highest volatility level is an

indicator that a crash is still in progress, not that it is over and recovery is imminent. The

two figures, while qualitatively similar, are quite different in magnitudes. These extreme

volatility levels start at about 0.015 for the data, but not until 0.02 for the model. Left tail

behavior may be generally thicker, and more extreme for the simulation relative to the

data. Given the sparsity of data in these tails, missing this break point should not be a

major concern for a first pass at this test.

Volatility in financial time series displays several interesting features. This paper has

presented results on long memory, and also return asymmetries along with connections

to correlations and volatility. In their early work on volatility the team from Olsen and
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Associates documented patterns moving from high to lower frequency volatility mea-

sures.40

These results are based on different volatility measures. Define a high frequency volatil-

ity estimate using within month daily log returns using the following equation,

xH
t =

m

∑
j=1
|rt,j|.

Now define a coarser volatility estimate for a month with the simple absolute return over

the monthly summed return,

xL
t =

∣∣( m

∑
j=1

rt,j)
∣∣.

The volatility asymmetry result looks at cross correlations between these measures. There

often appears to be a much stronger impact from the coarser time scale to the finer time

scale, than from the fine scale to the coarse scale. One can interpret this as a mechanism

where small wiggles at higher frequencies do not impact long range volatility as much as

changes in the lower frequency components impact higher frequency volatility. Figure 15

displays the cross correlations of these high and low frequency volatility measures. It is

important to note again, that volatility is measured using weekly data for the simulations,

and a finer daily return series for the data. Both display a remarkably similar pattern with

coarser volatility measures tending to lead the finer volatility measure. The solid lightly

shaded lines in the figure simply reflect the leading (positive lag) correlations reflected

back across zero for comparison. In both cases the leading correlations are larger than the

lagging correlations. This feature suggests something interesting about how volatility is

processed across multiple time scales both in the model and in the actual data.
40See Dacorogna et al. (2001) and many references. Lynch & Zumbach (2003) is probably the most detailed exposition on this

phenomenon.
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4 Conclusions

This paper has explored a relatively simple computational agent-based model in terms of

replicating several long range empirical features for aggregate stock returns. This is done

while continuing to generate well known aspects of higher frequency price dynamics.

The ability of a single model to qualitatively, and in some cases quantitatively, match up

with many empirical facts suggests that this model may be a useful benchmark in terms

of heterogeneous agent structures.

The replicated features include some well known facts such as price/dividend pre-

dictive regressions and the leverage effect. However, in several cases the empirical facts

are not as well known. The data and simulations both show that lagged returns have a

very different impact on future returns in rising and falling markets. Most of the tradi-

tional momentum like features come from periods of price increases, while decreases are

more likely to lead to price reversals. Also, volatility moves in an interesting way with

the price/dividend ratio. Conditional variances are generally lowest at the market peaks,

and highest in the troughs. Finally, risk and return exhibit a much more complicated

picture, than that predicted by economic theory in that the relationship appears to be

non monotonic with extremely large volatility levels leading to reductions in conditional

returns.

The model generates a set of reliable patterns in its time series that can be summarized

with a few key features. Prices make large swings from fundamental values, but they

are asymmetric in their dynamics with slow and quiet, but persistent movements on the

upside, and sharp turbulent dynamics as they fall. This basic dynamic framework qual-

itatively summarizes most of the results which are shown to line up well between data

and the model. The actual data is too short and too noisy to reveal these patterns in much

detail, but further analysis to see how well this simple description fits it will be important.

The model is still not perfect as it generates some interesting counterfactuals. The most
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obvious of these is that the long range boom and bust cycle for prices and dividends is far

more predictable from the standpoint of regression R-squared. In the data, movements

in prices and dividends display a more erratic pattern. The agent-based market is not

perfectly cyclical, but it does have generally more regular cycles in the price/dividend -

return pattern than for the data. Similarly, the volatility regularity with market extremes

is much more pronounced for the simulation. It remains to be seen exactly what this is

coming from. It could simply be the larger amount of data from the simulated market,

or a much more regular process (geometric random walk) for the dividend series than is

reasonable in the data.41

It should be noted that the model does contain several design features which appear

to contribute to the dynamics in important ways, and these may be fundamental. They

include the explicit modeling of risk and return. This mechanism, along with heteroge-

neous gain levels on the agents’ volatility forecasts is able to drive a significant fraction

of the long range movements in the price/dividend ratio. This allows for long swings

in prices relative to fundamentals without the need for a large flow of agents from one

strategy to the next. Strategy shifting flows can be relatively modest which may be closer

to the data.

The empirical methodology for the paper is new. The agent-based model is used as

a super long range data generator giving sample lengths which are long enough so that

nonparametric kernel density methods are able to lock in on the key features for the sim-

ulated data. The simulation based time series are used for bandwidth estimation. This

is a form of using the simulation as a model selection tool. Once the model specification

is chosen, it can be taken to the actual data. It is a weaker form of validation than exact

moment matching, but it might still be useful, and could have much more practical value

in helping to sort through various empirical specifications for applications to real data
41Remember that agents are assumed to completely understand the dividend process in this market. Weakening this assumption

might be important for this.
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series.

The world of agent-based financial modeling remains a complicated area with many

competing model specifications. Much progress has been made theoretically in under-

standing their dynamics, but less progress has been made in terms of narrowing the space

of models down by matching to data. This paper moves in this direction by fitting fea-

tures at both short and long horizons, and demonstrating that a relatively simple new

agent-based model is capable of matching a large range of facts.
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Table 1: U.S. Income Series

Dividends Adjusted dividends Earnings GDP Consumption
Growth 1.06 1.77 1.91 3.10 2.18
Std 0.09 0.12 0.31 0.03 0.02

All data are U.S. real annualized series. Mean growth rates are in percentages. The financial series come from
the restricted Shiller data set, and cover 1886-2012. Real GDP and Consumption (nondurables) are from Fred
quarterly data, 1947-2012, seasonally adjusted.
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Table 2: Parameter Definitions
Parameter Value
dg 0.018
σd 0.12
r f 0
γ 3.5
λ 0.0005
I 16000
J 4000
gj [100,20,10,5,2] years
gL 200 years
gu [100,20,10,5,2] years
L 5 percent/year
[αL,αH ] [0.01,0.99]
σε 0.01
MAR 3
hj [0.025,0.10]

The annual standard deviation of dividend growth is set to the level from real dividends in Shiller’s annual
long range data set adjusted for share repurchases.
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Table 3: Annual Excess Return Summary Statistics

Merged U.S. Multiple Small
1886-2012 Gain Gain

Mean(Re,t) 7.3 9.9 5.3
Std.(Re,t) 19.1 22.3 8.4
Mean(Pt/Dt) 22.5 20.1 36.7
Std(Pt/Dt) 6.6 5.3 1.9

Table 4: Weekly Return Summary Statistics
Series CRSP (1926-2012) Multiple gain Small gain
Skewness −0.5 −0.3 −0.0
Kurtosis 8.4 10.9 3.4
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Rt+1 − R f ,t+1 = α + β log(Pt/Dt)

Table 5: Price/Dividend Regressions

Series β R2

Merged U.S. (quarterly) −0.04 0.01
(−4.56)

Merged U.S. (annual) −0.19 0.07
(−21.11)

Simulation (quarterly) −0.08 0.05
(−38.00)

Simulation (annual) −0.32 0.20
(−79.25)
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σ2
t = α + β log(Pt/Dt)

log(σ2
t ) = α + β log(Pt/Dt)

Table 6: Price/Dividend and Volatility

Series β R2

Merged U.S. −0.18 · 10−2 0.01
(−4.50)

Merged U.S. (log(σ)) −0.39 0.12
(−4.33)

Simulation −1.84 · 10−2 0.28
(−92)

Simulation (log(σ)) −2.62 0.34
(−131)
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Figure 2: Benchmark (multiple gain) simulation
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Figure 4: Benchmark (small gain) simulation
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Figure 7: Monthly return autocorrelations
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Figure 8: Monthly volatility autocorrelations
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Figure 9: Kernel regression: log(Pt/Dt) versus ERt+1
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Figure 10: Kernel regression: log(Pt/Dt) versus σ2
t
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Figure 11: News impact curve: Rt−1 and σ2
t
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Figure 12: Momentum: 6 month - 1 month - 6 month forecast
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Figure 13: Conditional autocorrelations
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Figure 14: Risk and Expected Returns
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Figure 15: Volatility asymmetry : Course versus fine volatility measures. Green lines display reflected
leading estimates
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