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1 Introduction

The generic instability of financial markets has been discussed by many economists, but
there is still no accepted theoretical framework for what makes a financial market special.
One of the most important approaches to financial instability comes from the work of
Hyman Minsky.1 This paper presents an agent-based financial market that is shown to
share many of the features of the classic Minsky style of instability. This adds to the debate
on this subject by providing a runnable structural models which can be carefully explored
to better understand the how the Minsky structure plays out in terms of dynamics.

Minksy conjectures that financial markets begin to build up bubbles as investors be-
come increasingly overconfident about markets. They begin to take more aggressive po-
sitions, and can often start to increase their leverage as financial prices rise. Prices even-
tually reach levels which cannot be sustained either by correct, or any reasonable forecast
of future income streams on assets. Markets reach a point of instability, and the over ex-
tended investors must now begin to sell, and are forced to quickly deleverage in a fire
sale like situation. As prices fall market volatility increases, and investors further reduce
risky positions. The story that Minsky tells seems compelling, but we have no agreed
on approach for how to model this, or whether all the pieces of the story will actually fit
together. The model presented in this paper tries to bridge this gap.

Heterogeneous agent-based models have been applied to financial markets for quite
some time.2 Their common theme is to consider worlds in which agents are adaptively
learning over time, while they perceive and contribute to time series dynamics unfold-
ing into the future. Endogenous price changes then feed back into the dynamic learning
mechanisms. Agents are modeled as being boundedly rational, and the potential behav-
ioral space for these systems is large. However, some distinctions in modeling strategies
have emerged. One extreme of agent-based financial markets is what is known as a “few
type” model where the number of potential trading strategies is limited to a small, and
tractable set.3 Dynamics of these markets can be determined analytically, and occasion-
ally through computer simulations. Their simple structure often yields very easy and
intuitive results. At the other extreme are what are known as “many type” models. In
these cases the strategy space is large. In many cases it is infinite as agents are working
to develop new and novel strategies. Obviously, the complexity of these models requires

1His classic book on the subject Minsky (1986) presents most of the basic ideas. Echoes of his framework can be felt in other work
such as Kindleberger & Aliber (2005), or Reinhart & Rogoff (2011).

2 Many examples can be found in recent surveys such as Hommes (2006), LeBaron (2006), and Chiarella, Dieci & He (2009). Another
useful review is Farmer & Geanakoplos (2008) where the authors press the case for heterogeneity in modeling financial markets.

3 Early examples of these include, Day & Huang (1990), Brock & Hommes (1998) and Lux (1998).
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computational methods for analysis. This in itself is not a problem, but the abilities of
researchers to analyze their detailed workings has been limited. The model presented
here will try to seek a middle ground between these. It tries to be rich enough to generate
interesting financial price and volume dynamics, but simple enough for careful analysis.

Several agent-based financial markets have highlighted the possibility for heterogene-
ity in the processing of past information by learning agents.4 This market will use differ-
ences in how the past is evaluated by traders to generate heterogeneous future forecasts.
There are many good reasons for doing this. The most important is that the model ex-
plores the evolutionary interactions between short and long memory traders, with an
interest in whether any of these types dominate. A second reason, is that this parameter
is part of almost all learning algorithms. In this paper, learning will be of the constant
gain variety, where a fixed gain parameter determines agents’ perception of how to pro-
cess past data. Setting this to a specific value, constant across all agents, would impose a
very large dynamic assumption on the model.

This paper begins by demonstrating that the model generates reasonable dynamics in
terms of financial time series. This section is short since most of these results are presented
in greater detail in LeBaron (2010). The critical dynamics around large price drops are
then shown to exhibit very regular patterns that bear some resemblance to the Minksy
agenda. The final sections look under the hood of the demand functions for the various
strategies to show how they form the core for general financial behavior (with or without
leverage), which is critical to generating instabilities.5

2 Model Structure

This section describes the structure of the model. It is designed to be tractable, stream-
lined, and close to well known simple financial models. The use of recognized com-
ponents allows for better analysis of the impact of interactive learning mechanisms on
financial dynamics. Before getting into the details, I will emphasize several key features.

First, market forecasts are drawn from two common forecasting families, adaptive and
fundamental expectations. The adaptive traders base their expectations of future returns
from weighted sums of recent returns. The expectation structure is related to simple adap-
tive expectations, but also has origins in either Kalman filter, momentum or trend follow-

4Earlier examples include Levy, Levy & Solomon (1994) and LeBaron (2001).
5 Instability in all these cases drives from periods where, regardless of strategies, many agents are forced to liquidate positions of

risky assets, in a kind of fire-sale situation. Examples of this can be seen in the agent-based world in Ussher (2008), and also Shin
(2008) or Brunnermeir & Sannikov (2010).
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ing mechanisms. The fundamental traders base their expectations on deviations of the
price from the level of dividends using (Pt/Dt) ratios. The impact of the price/dividend
ratio on conditional expected returns is determined by running an adaptive regression
using a recursive least squares learning algorithm.

Agent portfolio choices are made using preferences which correspond to standard my-
opic constant relative risk aversion. Portfolio decisions depend on agents’ expectations
of the conditional expected return and variance of future stock returns. This allows for
splitting the learning task on return and risk into two different components which adds
to the tractability of the model. These preferences could also be interpreted as coming
from intertemporal recursive preferences subject to certain further assumptions.

The economic structure of the model is well defined, simple, and close to that for stan-
dard simple finance models.6 Dividends are calibrated to the trend and volatility of real
dividend movements from U.S. aggregate equity markets.7 The basic experiment is then
to see if market mechanisms can generate the kinds of empirical features we observe in
actual data from this relatively quiet, but stochastic fundamental driving process. The
market can therefore be viewed as a nonlinear volatility generator for actual price series.
The market structure also is important in that outside resources arrive only through the
dividend flows entering the economy, and are used up only through consumption. The
consumption levels are set to be proportional to wealth which, though unrealistic, cap-
tures the general notion that consumption and wealth must be cointegrated in the long
run. Finally, prices are set to clear the market for the fixed supply of equity shares. The
market clearing procedure allows for the price to be included in expectations of future
returns, so an equilibrium price level is a form of temporary equilibrium for a given state
of wealth spread across the current forecasting rules.

Rule heterogeneity and expectational learning for both expected returns, and condi-
tional variances, is concentrated in the forecast and regression gain parameters. Constant
gain learning mechanisms put fixed declining exponential weights on past information.
Here, the competition across rules is basically a race across different gains, or weights of
the past. The market is continually asking the question whether agents weighing recent
returns more heavily can be driven out of the market by more long term forecasters.

The empirical features of the market are emergent in that none of these are prewired
into the individual trading algorithms. Some features from financial data that this market

6Its origins are a primitive version of models such as Samuelson (1969), Merton (1969), and Lucas (1978) which form a foundation
for much of academic finance.

7 Dividend calibration uses the annual Shiller dividend series available at Robert Shiller’s website. Much of this data is used in his
book Shiller (2000). Another good source of benchmark series is Campbell (1999) which gives an extensive global perspective. Early
results show that the basic results are not sensitive to the exact dividend growth and volatility levels.
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replicates are very interesting. This would include the simple and basic feature of low
return autocorrelations. In this market traders using short range autoregressive models
play the role of short run arbitragers who successfully eliminate short run autocorrela-
tions. They continually adapt to changing correlations in the data, and their adaptation
and competition with others drives return correlations to near zero. This simple mech-
anism of competitive near term market efficiency seems consistent with most stories we
think about occurring in real markets.

Finally, learning in the market can take two different forms. First, there is a form of
passive learning in which wealth which is committed to rules that perform well tends to
grow over time. These strategies then play an ever bigger role in price determination.
This is the basic idea that successful strategies will eventually take over the market. All
simulations will be run with some form of passive learning present, since it is fundamen-
tal to the model and its wealth dynamics. Beyond this, the model can also consider a
form of active learning in which agents periodically adapt their behavior by changing to
forecast rules that improve their expected utility. There are many ways to implement this
form of adaptive learning in the model, and only a few will be explored here. Another
interesting question is how precise the estimates of expected utility are that are guid-
ing the active learning dynamics. In a world of noisy financial time series adaptations
might simply generate a form of drift across the various forecasting rules. Comparing
and contrasting these two different types of learning is an interesting experiment which
this model is designed to explore.

2.1 Assets

The market consists of only two assets. First, there is a risky asset paying a stochastic
dividend, Dt. The log dividend, dt = log(Dt), follows a random walk,

dt+1 = dg + dt + εt. (1)

The constant dg is the growth rate, or drift, for the log dividend process.8 Time will be
incremented in units of weeks. The shocks to dividends are given by εt which is inde-
pendent over time, and follows a Gaussian distribution with zero mean, and variance, σ2

d ,
that will be calibrated to actual long run dividends from the U.S. The dividend growth
rate would then be given by edg+(1/2)σ2

d which is approximately Dg = dg + (1/2)σ2
d .

8 Lower case variables will represent logs of the corresponding variables.
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The return on the stock with dividend at date t is given by

Rt =
Pt + Dt − Pt−1

Pt−1
, (2)

where Pt is the price of the stock at time t. Timing in the market is critical. Dividends are
paid at the beginning of time period t. Both Pt and Dt are part of the information set used
in forecasting future returns, Rt+1. There are I individual agents in the model indexed by
i. The total supply of shares is fixed, and set to unity,

I

∑
i=1

St,i = 1. (3)

There is also a risk free asset that is available in infinite supply, with agent i holding
Bt,i units at time t. The risk free asset pays a rate of r f which will be assumed to be
zero in all simulations. This is done for two important reasons. It limits the injection of
outside resources to the dividend process only. Also, it allows for an interpretation of this
as a model with a perfectly storable consumption good along with the risky asset. The
standard intertemporal budget constraint holds for each agent i,

Wt,i = PtSt,i + Bt,i + Ct,i = (Pt + Dt)St−1,i + (1 + r f )Bt−1,i, (4)

where Wt,i represents the wealth at time t for agent i. Consumption at time t by agent i is
given by Ct,i.

2.2 Preferences

Portfolio choices in the model are determined by a simple myopic power utility function
in future wealth. The agent’s portfolio problem corresponds to,

maxαt,i

Ei
tW

1−γ
t+1,i

1−γ , (5)

st. Wt+1,i = (1 + Rp
t+1,i)(Wt,i − Ct,i), (6)

Rp
t+1,i = αt,iRt+1 + (1 − αt,i)R f . (7)
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αt,i represents agent i’s fraction of savings (W − C) in the risky asset. It is well known
that the solution to this problem yields an optimal portfolio weight given by,

α∗t,i =
Ei

t(rt+1)− r f +
1
2 σ2

t,i

γσ2
t,i

, (8)

with rt = log(1 + Rt), r f = log(1 + R f ), and σ2
t,i is agent i’s estimate of the conditional

variance at time t. This is perturbed by a small amount of individual noise to give the
actual portfolio choice for agent i,

αt,i = α∗t,i + εt,i. (9)

Where εt,i is an individual shock designed to make sure that there is some small amount
of heterogeneity to keep trade operating.9 It is normally distributed with variance, σ2

ε .
In the current version of the model neither leverage nor short sales are allowed. The

fractional demand is restricted to αt,i with αL ≤ αt,i ≤ αH with αL = 0.05 and αH = 0.95.
The addition of both these features is important, but adds significant model complexity.
One key problem is that with either one of these, one must address problems of agent
bankruptcy, and borrowing constraints. Both of these are not trivial, and involve many
possible implementation details.

Consumption will be assumed to be a constant fraction of wealth, λ. This is identical
over agents, and constant over time. The intertemporal budget constraint is therefore
given by

Wt+1,i = (1 + Rp
t+1)(1 − λ)Wt,i. (10)

This also gives the current period budget constraint,

PtSt,i + Bt,i = (1 − λ)((Pt + Dt)St−1,i + (1 + r f )Bt−1,i). (11)

This simplified portfolio strategy will be used throughout the paper. It is important
to note that the fixed consumption/wealth, myopic strategy approach given here would
be optimal in a standard intertemporal model for consumption portfolio choice subject
to two key assumptions. First, the intertemporal elasticity of substitution would have to
be unity to fix the consumption wealth ratio, and second, the correlation between unex-
pected returns and certain state variables would have to be zero to eliminate the demand

9The derivation of this follows Campbell & Viceira (2002). It involves taking a Taylor series approximation for the log portfolio
return.
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for intertemporal hedging.10

2.3 Expected Return Forecasts

The basic problem faced by agents is to forecast both expected returns and the conditional
variance one period into the future. This section will describe the forecasting tools used
for expected returns. A forecast strategy, indexed by j, is a method for generating an
expected return forecast Ej(rt+1). Agents, indexed by i, can either be fixed to a given
forecasting rule, or may adjust rules over time depending on the experiment.

All the forecasts will use long range forecasts of expected values using a long range
minimum gain level, gL.

r̄t = (1 − gL)r̄t−1 + gLrt (12)

(p − d)t = (1 − gL)(p − d)t−1 + gL(p − d)t−1 (13)

σ̄2
r,t = (1 − gL)σ̄

2
t−1 + gL(rt − r̄t)

2 (14)

σ̄2
pd,t = (1 − gL)σ̄

2
pd,t−1 + gL((p − d)t − (p − d)t)

2 (15)

The long range forecasts, r̄t, (p − d)t, σ̄2
r,t, and σ̄2

pd,t correspond to the mean log return, log
price/dividend ratio, and variance respectively, and the gain parameter gL is common
across all agents.

The forecasts used will combine four linear forecasts drawn from well known forecast
families.11 The first of these is an adaptive linear forecast which corresponds to,

f j
t = f j

t−1 + gj(rt − f j
t−1). (16)

Forecasts of expected returns are dynamically adjusted based on the latest forecast and rt.
This forecast format is simple and generic. It has roots connected to adaptive expectations,
trend following technical trading, and also Kalman filtering.12 In all these cases a forecast
is updated given its recent error. The critical parameter is the gain level represented by
gj. This determines the weight that agents put on recent returns and how this impacts
their expectations of the future. Forecasts with a large range of gain parameters will

10See Campbell & Viceira (1999) for the basic framework. Also, see Giovannini & Weil (1989) for early work on determining con-
ditions for myopic portfolio decisions. Hedging demands would only impose a constant shift on the optimal portfolio, so it is an
interesting question how much of an impact this might have on the results.

11 This division of rules is influenced by the many models in the “few type” category of agent-based financial markets. These
include Brock & Hommes (1998), Day & Huang (1990), Gennotte & Leland (1990), Lux (1998). Some of the origins of this style of
modeling financial markets can be traced to Zeeman (1974).

12A nice summary of the connections between Kalman filtering, adaptive expectations, and recursive least squares is given in
Sargent (1999).
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compete against each other in the market. Finally, this forecast will be trimmed in that
it is restricted to stay between the values of [−hj, hj]. These will be set to relatively large
values, and are randomly distributed across the j rules.

The second forecasting rule is based on a fundamental strategy. This forecast uses log
price dividend ratio regressions as a basis for forecasting future returns,

f j
t = r̄t + β

j
t((p − d)t − (p − d)t). (17)

where (p− d)t is log(Pt/Dt). Although agents are only interested in the one period ahead
forecasts, the P/D regressions will be estimated using the mean return over the next MPD

periods, with MPD = 52 for all simulations.
The third forecast rule will be based on linear regressions, and is referred to as a “noise

trader” strategy. It is a predictor of returns at time t given by

f j
t = r̄t +

MAR

∑
i=1

β
j
t,i(rt−i+1 − r̄t) (18)

This strategy works to eliminate short range autocorrelations in returns series through its
behavior, and MAR = 3 for all runs in this paper. In this way it plays the role of a noise
trader, albeit a purposeful one, from other models.

The previous two rules will be estimated each period using recursive least squares.
There are many examples of this for financial market learning.13 The key difference is
that this model will stress heterogeneity in the learning algorithms with wealth shifting
across many different rules, each using a different gain parameter in its online updating.14

The final rule is a benchmark strategy. It is a form of buy and hold strategy using
the long run mean, r̄t, for the expected return, and the long run variance, ¯σ2

r,t, as the
variance estimate. This portfolio fraction is then determined by the demand equation
used by the other forecasting rules. This gives a useful passive benchmark strategy which
can be monitored for relative wealth accumulation in comparison with the other active
strategies.

13 See Evans & Honkapohja (2001) for many examples, and also very extensive descriptions of recursive least squares learning
methods.

14Another recent model stressing heterogeneity in an OLS learning environment is Georges (2008) in which OLS learning rules are
updated asynchronously.
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2.4 Regression Updates

Forecasting rules are continually updated. The adaptive forecast only involves fixed fore-
cast parameters, so its updates are trivial, requiring only the recent return. The two re-
gression forecasts are updated each period using recursive least squares.

All the rules assume a constant gain parameter, but each rule in the family corresponds
to a different gain level. This again corresponds to varying weights for the forecasts look-
ing at past data. The fundamental regression is run using the long range return,

r̃t =
1

MPD

MPD

∑
j=1

rt−j+1. (19)

The fundamental regression is updated according to,

β
j
t+1 = β

j
t +

gj

σ̄2
pd,t

((p − d)t−MPD ut,j) (20)

ut,j = (r̃t − f j,t−MPD).

For the lagged return regression this would be,

β
j
t+1,i = β

j
t,i +

gj

σ̄2
r,t
(rt−iut,j) i = 1, 2, 3, (21)

ut,j = (rt − f j
t )

where gj is again the critical gain parameter, and it varies across forecast rules.15 In both
forecast regressions the forecast error, ut,j, is trimmed. If ut,j > hj it is set to hj, and if
ut,j < −hj it is set to −hj. This dampens the impact of large price moves on the forecast
estimation process.

2.5 Variance Forecasts

The optimal portfolio choice demands a forecast of the conditional variance as well as the
conditional mean.16 The variance forecasts will be generated from adaptive expectations

15This format for multivariate updating is only an approximation to the true recursive estimation procedure. It is assuming that the
variance/covariance matrix of returns is diagonal. Generated returns in the model are close to uncorrelated, so this approximation is
probably reasonable. This is done to avoid performing many costly matrix inversions.

16 Several other papers have explored the dynamics of risk and return forecasting. This includes Branch & Evans (2011 forthcoming)
and Gaunersdorfer (2000). In LeBaron (2001) risk is implicitly considered through the utility function and portfolio returns. Obviously,
methods that parameterize risk in the variance may miss other components of the return distribution that agents care about, but the
gain in tractability is important.
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as in,
σ̂2

t,j = σ̂2
t−1,j + gj,σ(e2

t,j − σ̂2
t−1,j) (22)

e2
t,j = (rt − f j

t−1)
2, (23)

where e2
t,j is the squared forecast error at time t, for rule j. The above conditional variance

estimate is used for all the rules. There is no attempt to develop a wide range of variance
forecasting rules, reflecting the fact that while there may be many ways to estimate a con-
ditional variance, they often produce similar results.17 This forecast method has many
useful characteristics as a benchmark forecast. First, it is essentially an adaptive expecta-
tions forecast on second moments, and therefore shares a functional form similar to that
for the adaptive expectations family of return forecasts. Second, it is closely related to
other familiar conditional variance estimates.18 Finally, the gain level for the variance in
a forecast rule, gj,σ, is allowed to be different from that used in the mean expectations, gj.
This allows for rules to have a different time series perspective on returns and volatility.

There is one further aspect of heterogeneity that is important to the market dynamics.
Agents do not update their variance estimates immediately. They do it with a lag using
a stochastic updating processes. Agent i will update to the current variance estimate for
rule j, σ̂2

t+1,j, with probability pσ.19 This allows for a greater amount of heterogeneity in
variance forecasts, and mitigates some extreme moves in price which can be caused by
a simultaneous readjustment in market risk forecasts. This is a form of simulating more
heterogeneity in the variance forecasting process, but in a stochastic fashion.

2.6 Market Clearing

The market is cleared by setting the individual share demands equal to the aggregate
share supply of unity,

1 =
I

∑
i=1

Zt,i(Pt). (24)

Writing the demand for shares as its fraction of current wealth, remembering that αt,i is a
function of the current price gives

PtZt,i = (1 − λ)αt,i(Pt)Wt,i, (25)
17See Nelson (1992) for early work on this topic.
18 See Bollerslev, Engle & Nelson (1995) or Andersen, Bollerslev, Christoffersen & Diebold (2006) for surveys of the large literature

on volatility modeling.
19Also, the agents do not use pt information in their forecasts of the conditional variance at time t. This differs from the return

forecasts which do use time t information. Incorporating time t information into variance forecasts will cause the market not to
converge as prices can spiral far from their current levels, causing market demand for shares to crash to zero.
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Zt,i(Pt) = (1 − λ)αt,i(Pt)
(Pt + Dt)St−1,i + Bt−1,i

Pt
. (26)

This market is cleared for the current price level Pt. This needs to be done numeri-
cally given the complexities of the various demand functions and forecasts, and also the
boundary conditions on αt,i.20 It is important to note again, that forecasts are conditional
on the price at time t, so the market clearing involves finding a price which clears the mar-
ket for all agent demands, allowing these demands to be conditioned on their forecasts of
Rt+1 given the current price and dividend.21

2.7 Gain Levels

An important design question for the simulation is how to set the range of gain levels for
the various forecast rules. These will determine the dynamics of forecasts. Given that this
is an entire distribution of values it will be impossible to accomplish much in terms of
sensitivity analysis on this. Therefore, a reasonable mechanism will be used to generate
these, and this will be used in all the simulations.

Gain levels will be thought of using their half-life equivalents, since the gain numbers
themselves do not offer much in the way of economic or forecasting intuition. For this
think of the simple exponential forecast mechanism with

f j
t+1 = (1 − gj) f j

t + gjet+1. (27)

This easily maps to the simple exponential forecast rule,

ft =
∞

∑
k=1

(1 − gj)
ket−k. (28)

The half-life of this forecast corresponds to the number of periods, mh, which drops the
weight to 1/2,

1
2
= (1 − gj)

mh , (29)

or
gj = 1 − 2−1/mh . (30)

The distribution of mh then is the key object of choice here. It is chosen so that log2(mh)

20A binary search is used to find the market clearing price using starting information from Pt−1. The details of this algorithm are
given in the appendix.

21 The current price determines Rt which is an input into both the adaptive and short AR forecasts. Also, the price level Pt enters
into the Pt/Dt ratio which is required for the fundamental forecasts. All forecasts are updated with this time t information in the
market clearing process.
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is distributed uniformly between a given minimum and maximum value. The gain levels
are further simplified to use only 5 discrete values. These are given in table 1, and are
[1, 2.5, 7, 18, 50] years respectively. In the long memory (low gain) experiments these five
values will be distributed between 45 and 50 years.

These distributions are used for all forecasting rules. All forecast rules need a gain
both for the expected return forecast, and the variance forecast. These will be chosen
independently from each other. This allows for agents to have differing perspectives on
the importance of past data for the expected return and variance processes.

2.8 Adaptive rule selection

This model allows for both passive and active learning. Passive learning corresponds to
the long term evolution of wealth across strategies. Beyond passive learning, the model
allows for active learning, or more adaptive rule selection. This mechanism addresses
the fact that agents will seek out strategies which best optimize their estimated objective
functions. In this sense it is a form of adaptive utility maximization.

Implementing such a learning process opens a large number of design questions. This
paper stays with a relatively simple implementation. The first question is how to deal
with estimating expected utility. Expected utility will be estimated using an exponentially
weighted average over the recent past,

Ût,j = Ût−1,j + gi
u(Ut,j − Ût−1,j), (31)

where Ut,j is the realized utility for rule j received at time t. This corresponds to,

Ut,j =
1

1 − γ
(1 + Rp

t,j)
(1−γ) (32)

with Rp
t,j the portfolio holdings of rule j at time t. Each rule reports this value for the 5

discrete agent gain parameters, gi
u. Agents choose rules optimally using the objective that

corresponds to their specific perspective on the past, gi
u, which is a fixed characteristic.

The gain parameter gi
u follows the same discrete distribution as that for the expected

return and variance forecasts.
The final component in the learning dynamic controls how the agents change forecast-

ing rules. The mechanism is simple, but designed to capture a kind of heterogeneous
updating that seems plausible. Each period a certain fraction, L, of agents is chosen at
random. Each one randomly chooses a new rule out of the set of all rules. If this rule
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exceeds the current one in terms of estimated expected utility, then the agent switches
forecasting rules.

3 Results and Experiments

3.1 Calibration and parameter settings

Table 1 presents the key parameters used in the simulation. As mentioned the dividend
series is set to a geometric random walk with drift. The drift level, and annual standard
deviation are set to match those from the real dividend series in Shiller’s annual data set.
This gives a recognizable real growth rate for dividends of 2 percent per year. The level
of risk aversion, γ will be fixed at 3.5 for all runs. This is a reasonable level for standard
constant relative risk aversion.22 The gain range for the learning models is set to 2-50
years in half-life values. This means that the largest gain values one year in the past at
one half the weight given to today, and the smallest gain weights data 50 years back at
1/2 today’s weight. For all runs there will be I = 10000 agents, and J = 10000 forecast
rules. The value of λ, the consumption wealth ratio, was chosen to give both a reasonable
P/D ratio, and also reasonable dynamics in the P/D time series.

3.2 Time series features

3.2.1 Weekly Series

This section will give a brief picture of the time series features generated by the model.
As with many agent-based models most of the common empirical features of financial
time series are replicated.

Figure 1 displays a 100 year snapshot of the end of a simulation. The top panel shows
the variability of the price/dividend ratio. It is clear that the price moves around the
dividend value, and does not appear to converge or settle down. There is also some
indication of asymmetry in how it moves over time, with steep drops, and long slow
returns. The middle panel shows the corresponding return series which clearly shows
several extreme returns, and pockets of high and low volatility as is common in most
financial series.

Table 2 presents some simple summary statistics for the baseline simulation shown in
figure 1. Table 2 presents weekly summary statistics which reflect most of these early

22Many of the results can be replicated for a range of γ from 3 − 4. The value of 3.5 gives some of the most realistic looking series
while still being a reasonable level.
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graphical features. The two comparison series are weekly returns with dividends for the
CRSP value weighted index and IBM, covering all years from 1926-2009. The returns
show a reasonable level of volatility in the row labeled Std. They are more variable than
the CRSP index returns, but slightly less than those generated by weekly IBM returns.
Although they are calibrated to aggregate returns, the agents trade this as an individual
stock, so it is not clear which is the best comparison.

The next two rows report skewness and kurtosis estimates. These are all comparable
across the 3 different return series. Kurtosis levels for the simulation are a little higher
than those in the data. The last two rows in the table present the tail exponent which is
another measure of the shape of the tail in a distribution. This estimate uses a modified
version of the Hill estimator as developed in Huisman, Koedijk, Kool & Palm (2001), and
further explored in LeBaron (2008) who shows it gives a very reliable estimate of this tail
shape parameter. Values in the neighborhood of 2 − 4 are quite common for weekly asset
return series, so the results here are all within reasonable ranges.23

Figure 2 displays the return autocorrelations for the two series. The top panel displays
autocorrelations for returns on the baseline simulation and the weekly CRSP series. They
reveal the common result of very low autocorrelations in returns. The correlation at 2
days for the simulation is near 0.12 which is a little high, but not completely out of line
with actual correlations. It should be noted that the autocorrelation at lag 1 is near zero
for the simulation. This is interesting since one strategy, the noise trader, is designed to
try to take advantage of just this type of predictability.

It is well known that the absolute magnitude of returns is persistent. Whether we call
this volatility persistence, or correlations in squared or absolute returns, it is a common
stylized fact for most asset return series. The lower panel in figure 2 shows that this
positive correlation holds for the simulation. Positive correlations in returns continue out
well beyond 1 year (52 weeks) which is also common for many financial series.24 The
CRSP series shows this too, but its persistence is still larger than the simulation.

3.2.2 Annual Series

This section turns to the longer run properties of the simulation generated time series.
For comparisons, the annual data collected by Shiller are used. Figure 3 presents both the
S&P price/earnings (P/E) ratio, and the price/dividend (P/D) ratio from the simulation.
The simulation contains only one fundamental for the stock, and it can be viewed as

23These values give important information on higher order moment existence. They indicate that moments below 3 exist, but those
above 3 may not exist. This calls into question whether reported estimates of kurtosis are reliable or meaningful.

24 This is often conjectured to be well represented as a long memory or fractionally integrated process.
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an earnings series with a 100 percent payout. It could also be viewed as a dividend,
so both series will be presented for comparison. This figure shows the simulation giving
reasonable movements around the fundamental with some large swings above and below
as in the actual data. There is some indication of some very large and dramatic drop offs
in the simulations which appear much smoother in the data. The lower panel is repeated
in figure 4 which replaces the upper panel with the S&P price dividend ratio. This appears
a little smoother than the P/E ratio, but is still relatively volatile. It is dominated by the
very dramatic run up at the end of the century.

Quantitative levels for these long range features are presented in table 3. The first two
rows give the mean and standard deviation for the P/E and P/D ratios at the annual fre-
quency. The first two columns show a generally good alignment between the simulation
and the annual P/E ratios. The P/D ratio from the actual series is slightly more volatile
with an annual std. of over 12. Deviations from fundamentals are very persistent, and
these are displayed in all three series by the large first order autocorrelation. Again, the
simulation and the P/E ratio are comparable with values of 0.67 and 0.72 respectively. The
P/D ratio is slightly larger with an autocorrelation of 0.93. The last three rows present the
annual mean and standard deviations for the total real returns (inclusive of dividends) for
the simulation and annual S&P data. The returns generate a slightly high, real return of
11.1 percent as compared to 7.95 percent for the S&P. One conjecture is that much of this is
driven by the increase in volatility and its contribution to the adjustment from geometric
to arithmetic returns. This is examined in the next row, which reports the annual log real
return for the two series. This shows a much closer relationship. The higher volatility
reported earlier is repeated in the annual volatility estimates. The simulation gives an
annual standard deviation of 0.27 which compares to a value of only 0.17 for the S&P. The
last row reports the annual Sharpe ratio for the two series.25

4 Agent composition

This section turns to analyzing the properties of the agents after the market has stabilized
into a steady state. It is important to know how wealth is distributed both across strategy
types, and across gain levels within each strategy. This distribution of wealth is the key
state of the market that controls dynamics as it moves through time.

Figure 5 shows the time series behavior of the fractions of wealth in the different strate-
25 For the simulation this is simply the annual return divided by the standard deviation. For the S&P the annual interest rate from

the Shiller series is used in the standard estimate, (re − r f )/σe.
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gies. Wealth has some periods in which it fluctuates erratically, but over most of the sim-
ulations the proportions remain relatively stable. They reach a steady state after about
20,000 weeks have gone by. There still is a some extensive variability of wealth across
rules even in this steady state. The ordering of the wealth series is important. The adap-
tive rules often control the largest share with about 40-45 percent. The next largest level
goes to the buy and hold strategy with close to 40 percent. The fundamental strategy con-
trols only about 10 percent of the wealth on average. The noise traders are the smallest
with only about 5 percent of wealth.

The large amount of wealth in the adaptive strategy relative to the fundamental is
important. The fundamental traders will be a stabilizing force in a falling market. If
there is not enough wealth in that strategy, then it will be unable to hold back sharp
market declines. This is similar to a limits to arbitrage argument. In this market without
borrowing the fundamental strategy will not have sufficient wealth to hold back a wave
of self-reinforcing selling coming from the adaptive strategies.

Agents are distributed across gain levels as well as over different strategy types. This
form of heterogeneity is also important to the market dynamics. Figure figure 6 shows
a snapshot of the distribution of gains for the different strategies. As noted before, the 5
discrete gain levels range from 2 years through 50 years in terms of half-lives. The funda-
mental strategy displays a relatively uniform pattern across gains. There is no tendency
to select any particular range of adaptive learning which is interesting and important.
The adaptive rules are different with a some selection toward higher gain (short memory)
trading strategies. This does suggests that some fraction of wealth is using relatively short
range momentum behavior in their trading decision making. Finally, the noise traders,
who are running short horizon return auto regressions, concentrate on relatively low gain
strategies. This suggests that they are locking down on relatively effective, and stable, use
of their adaptive learning recursive least squares forecasts.

Figure figure 7 repeats the previous wealth distributions for the variance forecasting
gain levels. Remember that agents are allowed to forecast volatility using a different
gain level from what they use to forecast returns.26 The distributions in figure 7 show a
uniform pattern across all three forecasting rules. There is no tendency to converge to any
specific horizon on these. This will be important to the dynamics of the market as will be
shown in the next section.

26This may seem strange at first, but it is important to remember that the gain level may be driven by perceptions of signal/noise
ratios as well as expectations about the usefulness of past data.
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5 Crash dynamics

5.1 Dynamics around crashes

This dynamics of the market as shown in figure 1 appears to be defined by long run
increases in the price of the asset or P/D ratio, followed by brief dramatic price declines,
or market crashes. Figure 8 presents an event study summarizing these comovements
over many periods. It uses the last 50,000 weeks of data. A crash is defined as a return
which is below the 0.005 quantile in the return distribution. Once a day is determined as
a crash day, then the next year (52 weeks) of returns are blocked. This is an attempt to
make the classification detect the beginning of a period of distress in the market.

The upper left panel displays the results for trading volume. The pattern shows low
volume before the crash hits, then a spike up, and persistent high volume after the crash.
There is some indication that volume may start to increase before the actual date of the
crash, but this may also be due to misdating of the event. A reverse pattern is given in
the upper right panel for the equity fraction which falls dramatically after a crash. Again,
this process begins slightly before the event date which could again be a dating issue.

The lower left panel displays the cross sectional mean for the coefficient used in the
P/D regression equation. In this case the value tends to be closer to zero before the crash,
and then it swings dramatically negative after. There is a 52 week lag which corresponds
to the length of the regression. Since this forecast looks 52 weeks into the future, the crash,
and the corresponding P/D ratio, will remain in the regression until 52 weeks after the
crash. After this point the value begins to increase. The relatively large values prior to the
crash are indicative of learning algorithms which have not observed a crash in the recent
data, and are beginning to forget what a large P/D ratio implies for conditional return
forecasts.

The lower right panel is the most important of the figures in terms of price dynamics.
This figure estimates the actual demand elasticity estimated from the aggregate demand
curve using all the individual agent forecasts. The sign of this indicates whether the
demand is well behaved around a period of financial instability. A negative sign cor-
responds to a well behaved, downward sloping demand curve. The sign, and demand
slope, is negative on average, but the values are quite different around a crisis. It appears
to turn positive about 5 weeks before a crises starts as shown by the dark vertical line in
the figure. It also continues positive for several weeks after the crises. If one were looking
for a reliable “early warning” indicator, then this would work for this model. Unfortu-
nately, in actual financial data we don’t get to observe the slope of the demand curve, so
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it would not be feasible.

5.2 Demands and mechanisms

In order to get a better sense for the mechanism behind market instability figure 9 plots
the excess demand curves in both a normal and a crash period. The prices in both plots
are normalized so that the current price is 1. The latter is defined as a period where the
price fall is larger than 10 percent. The first demand curve is taken as the last period in the
benchmark simulation, and the crash is the last price fall in the simulation run. This plot
is typical of what the two different demand situations look like in many simulations runs.
In the normal case the demand curve is well behaved, and it is clear that small wiggles
in this curve will generate only small changes in the equilibrium price. The crash market
demand shows how it contributes to instability. The demand curve is near vertical around
the current price leading to a dramatic drop in price after a small shift in the demand
curve.

Figure 10 splits the demand curves apart by strategy family, and also decomposes the
demands as follows. Total demand for shares is given by,

St =
I

∑
i=1

αi(Pt)(St−1,i(Pt + Dt) + Bt−1,i)

Pt
. (33)

Split this into,

St =
I

∑
i=1

αi(Pt)St−1,i +
I

∑
i=1

αi(Pt)
(St−1,iDt + Bt−1,i)

Pt
. (34)

While both of these aggregate demands are complicated expressions, the first is more
likely to be destabilizing, since it only involves the function αi(Pt). The fraction of wealth
for the risky asset can be increasing in Pt since this would be a characteristic of the adap-
tive strategy. The first part is a kind of active strategy response to a price change. The
second component is a portfolio composition component, since it will change even for a
fixed equity fraction. It corresponds to the need to adjust the portfolio in response to a
price change in order to maintain appropriate strategy fractions. For example, if the eq-
uity price were to fall, investors holding a constant wealth fraction in equity, would need
to respond by purchasing more equity to maintain current wealth fractions. This buying
activity in response to a falling price is a major stabilizing force.27

Figure 10’s four panels correspond to the four different strategies. Demands are now
27One could carefully work out the components of price impact on demand both through the portfolio composition and α, but this

will be complicated by the fact that the final analysis depends critically on the overall wealth weights on different agents in the market.
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in units of actual shares on the x-axis. Comparisons across strategies give an idea of
each strategy’s size in the market. The solid blue line corresponds to total demand, the
dashed red line is the active strategy component of demand, and the dot-solid green line
corresponds to the portfolio composition part.

The upper left panel corresponds to the adaptive forecast strategy. In this case there
is a backward bending component to the active strategy component of demand (dashed
line). A price increase for this strategy will lead to an increase in its forecast of expected
returns, and therefore the destabilizing nature of the strategy is made clear in the demand
for shares. Adding the composition component diminishes the destabilizing parts of the
demand as was previously discussed.

The upper right panel displays the fundamental strategy. Expected returns in this case
fall as the price rises, and this is realized through a downward sloping active compo-
nent in the demand curve. The curve eventually goes vertical as the strategy reaches its
minimum share demand. Again, the addition of the composition further smoothes the
demand curve.

The lower left panel corresponds to the noise trader component. This can vary de-
pending on the distribution of the regression parameter across noise traders which can
be positive or negative. In this case it displays a backward bending part in both com-
ponents of its demand, and therefore in the total demand. It should be noted that this
type of trader corresponds to a small part of the market as shown by the low level of
share demands. The final panel corresponds to the buy and hold strategy. These traders
put little weight on current price changes in terms of their portfolio fractions. This gives
an active component which is vertical. After the addition of the composition component
these agents display a well behaved, downward sloping, demand curve.

Figure 11 gives another view of how the market dynamics is tied to agents’ perceptions
of volatility or risk as the market moves through its cycles. The upper panel displays the
price/dividend ratio again. The middle panel shows the equity fraction for the funda-
mental strategy only. However, it is divided into two categories, one corresponding to
low variance gain risk forecasts (blue solid line), and one corresponding to high variance
gain forecasts (dashed red line). The low variance gain agents are less sensitive to short
run swings in risk and are generally immune to Minsky like effects of misperceiving mar-
ket risk. They follow a well defined strategy of backing off their positions as the P/D ratio
increases, and they come back strong after a crash. The high gain strategies do not follow
the “fundamental program” as well because of their added sensitivity to short run risk.
When the market rises, they begin to increase their equity positions. They are respond-
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ing to their perceptions of risk which are displayed in the dashed red line in the lower
panel. As the market reaches a top, they perceive risk as being low, even though a crash
is eminent. The solid blue line in the bottom panel corresponds to the risk perceptions of
the low gain forecasters who use a near constant long range risk measure. The high gain
fundamental agents also back off their positions as when the P/D ratios are low. This is
their response to their heightened risk after a crash. Crudely speaking, they don’t have
the guts to maintain their aggressive positions in the face of market turmoil.

Since figure 7 has shown that fundamental forecasts are evenly spread across all the
variance gain levels, there is a good fraction of wealth that will not be implementing the
fundamental strategy as well as the other agents, and contributes to both market insta-
bility, and probably their overall relative performance in the population. In terms of the
entire market, this generates instability from a larger fraction fully invested in equity at
the market top. It also contributes to the limits to arbitrage feature in that the fundamental
strategy cannot gain enough of the overall wealth to be able to stabilize the market.

6 Conclusions

This paper has presented results of a stylized agent-based financial market. The model
passes the usual hurdles of replicating most of the key features of financial time series
including, long range fundamental deviations, volatility persistence, and fat tailed return
distributions. The fact that this is possible in an agent-based market is not particularly
new. However, for this market, the underlying structure reveals aspects of agent behavior
which point to generic stabilizing and destabilizing properties that may cary over into real
markets.

The dynamics are dominated by somewhat irregular swings around fundamentals,
that show up as long persistent changes in the price/dividend ratio. Prices tend to rise
slowly, and then crash fast and dramatically with high volatility and high trading volume.
During the slow steady price rise, agents using similar volatility forecast models begin to
lower their assessment of market risk. This drives them to be more aggressive in the
market, and sets up a crash. All of this is reminiscent of the Minksy market instability
dynamic, and other more modern approaches to financial instability.

Instability in this market is driven by agents steadily moving to more extreme portfolio
positions. Much, but not all, of this movement is driven by risk assessments made by the
traders. Many of them continue to use models with relatively short horizons for judging
market volatility. These beliefs appear to be evolutionarily stable in the market. When
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short term volatility falls they extend their positions into the risky asset, and this even-
tually destabilizes the market. Portfolio composition varying from all cash to all equity
yields very different dynamics in terms of forced sales in a falling market. As one moves
more into cash, a market fall generates natural rebalancing and stabilizing purchases of
the risky asset in a falling market. This disappears as agents move more of their wealth
into the risky asset. It would reverse if they began to leverage this position with bor-
rowed money. Here, a market fall will generate the typical destabilizing fire sale behavior
shown in many models, and part of the classic Minsky story. Leverage can be added to
this market in the future, but for now it is important that leverage per se is not necessary
for market instability, and it is part of a continuum of destabilizing dynamics.
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Table 1: Parameter Definitions
Parameter Value
dg 0.0126
σd 0.06
r f 0
γ 3.5
λ 0.0006
I 10000
J 10000
gj [2, 50] years
gu 17 years
L 10 percent/year
[αL, αH ] [0.05, 0.95]
σε 0.03
MPD 52 weeks
hj [0.005, 0.050]

The annual standard deviation of dividend growth is set to the level from real dividends in Shiller’s annual
long range data set. The growth rate of log dividends, 0.0126 corresponds to an expected percentage change
of Dg = 0.02 = dg + (1/2)σ2

d in annual dividends. This corresponds to the long range value of 0.021 in the
Shiller data.
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Table 2: Weekly Return Statistics
Baseline CRSP VW Weekly IBM Weekly

Mean (percentage) 0.22 0.17 0.26
Std 3.54 2.49 3.40
Skewness −0.77 −0.70 −0.59
Kurtosis 19.63 8.97 12.76
Tail exponent (left) 2.12 3.14 2.98
Tail exponent (right) 2.25 3.43 3.93

Basic summary statistics. CRSP corresponds to the CRSP value weighted index nominal log returns with
dividends, Jan 1926 - Dec 2009 with a sample length of 4455. IBM corresponds to nominal weekly log returns
with dividends over the same period. The simulations use a sample length of 25,000, drawn after 75,000 weeks
have gone by.
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Table 3: Annual Statistics
Baseline Shiller Earnings Shiller Dividends

Mean(P/D) 20.42 15.32 26.62
Std (P/D) 7.27 5.97 13.81
Autocorrelation(1) 0.68 0.72 0.93
Mean(Return) 11.10 7.95
Mean(Log(Return)) 6.82 6.22
Std(Return) 0.27 0.17
Annual Sharpe 0.40 0.30

Baseline model uses a sample of 100,000 weeks or about 1900 years. The Shiller series are annual from 1871-
2008. P/D refers to the price dividend ratio for the model and the Shiller dividends column. The earnings
column uses the annual P/E ratio instead. All returns are real including dividends. The Sharpe ratio estimated
from the Shiller annual data uses the 1 year interest rates from that series.
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Figure 1: Basic simulation dynamics
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Figure 8: Crash event dynamics

35



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Excess Demand

P
ric

e

 

 
Normal
Crash

Figure 9: Excess Demands
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Figure 10: Demand by Strategy
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Figure 11: Fundamental portfolio strategies and volatility
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