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Abstract

In this paper we look at the relationship between daily realized volatility esti-
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volatility measures. We find that the older range based estimators can be improved
by using more generalized nonlinear functions of the high/low range information.
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1 Introduction

Our empirical understanding and estimation of volatility and risk has been making great
progress over the last decade. The use of high frequency data in the estimation and fore-
casting of volatility has been critical in this process. Volatility estimates built from intraday
data produce conditional variance estimates which are orders of magnitude better than what
has been previously used.1 Our work will extend some of these results by connecting the
high frequency volatility values to range based estimates using nonparametric and nonlinear
techniques. Our goals are to develop a deeper understanding of the latent volatility pro-
cess itself, and to provide some improved volatility measures which can be used when high
frequency pricing series are not available.

In our analysis we utilize the Oxford-Mann Institute’s volatility libraries, (Heber, Lunde,
Shephard & Sheppard 2009). These are realized volatility estimates that the authors have
built using high frequency data feeds, and provide on their website to researchers. These
benchmark series form a core of our work in that we will view these estimates as high precision
volatility measures. We will then use contemporaneous range information to explore the
connections between daily ranges, and the high frequency measures. We take some of the
classic range volatility estimators as our benchmark comparisons.2

Our research on this topic is inspired by a paper coming from a slightly different area,
Hutchinson, Lo & Poggio (1994). These authors explore the gains of nonparametric modeling
in option pricing. They use various nonlinear nonparametric methods to estimate option
pricing relations. Their intention is to race the nonparametric methods with an important
parametric comparison, the Black/Scholes model. This can both show the practical power
of using a nonparametric approach, and demonstrate how and why the parametric model
fails, leading to better understanding of its limitations and assumptions.

Our goals are similar. We will fit high frequency realized volatility estimates to range
based volatility estimates, and race these against against some of the simple parametric
models that are available. We show that for most of our series, we can significantly improve
on these models. We use our nonlinear approaches both in the cross section and in the time
series risk forecasting context. There we race our improved models against forecasts build
from the actual realized volatility series. We show that performance of our modified range
estimator is surprisingly close to the realized volatility forecasts. Therefore, it looks like
these estimates may prove useful in contexts where only range information is available.

1 Three recent surveys of this large literature are Andersen, Bollerslev, Christoffersen & Diebold (forthcoming 2012) and
Barndorff-Nielsen & Shephard (2010), and McAleer & Medieiros (2008). The basic concept of using high frequency observations
to estimate lower frequency volatility goes back to Merton (1980) and French, Schwert & Stambaugh (1987).

2The two basic range based estimators we use follow Parkinson (1980) and Garman & Klass (1980).
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In demonstrating that the classic range estimators can be beaten, we open the question
of why they do so poorly. They are all built from assumptions which are violated in financial
data. The first is that high frequency pricing information does not follow a perfect Brownian
motion. Various market frictions enter through market microstructure, and the institutions of
trading itself. Research on this in volatility estimation has been very active, and the realized
volatility estimator we use has been designed to take this into account.3 The high/low range
information we use is not adjusted for market microstructure issues, and it is still not clear
how to do this. The second issue in high frequency data is that prices may contain discrete
jumps in addition to the continuous Brownian motion.4 It is possible these jumps interfere
with both our volatility measures, and cause the patterns that we observe in our series. We
will perform some simple monte-carlo experiments to show that basic jump models probably
are not the cause for what we are seeing. We feel a richer dynamic must be at work.

The next section reviews some of the literature on volatility estimators, and provides a
brief description of the estimators that we will be using. In section 3 we will estimate our
cross sectional volatility models. We fit daily realized volatility to various functional forms
using contemporaneous and lagged range information, and some other pricing information.
The models are compared in terms of cross sectional fits, and formal nonlinear specification
tests. Section 4 uses the range based volatility estimates in a time series context. We
follow much of the risk forecasting literature by building time series from logged volatility
estimates.5 Our objective is to see how the volatility models compare in a one step ahead
variance forecasting context. We simulate the model forecasts out of sample, assuming the
econometrician is operating without any of the high frequency information. This provides
an estimate of how well these models might perform in a situation where high frequency
information is unavailable or unreliable. The final section concludes and provides some
information for the future.

2 Daily volatility estimators

High frequency financial data allows for detailed estimates of market volatility. The basic
logic is that using higher and higher frequency pricing information will give more detailed
volatility estimates. In the case of a continuous time Brownian motion with no market

3 Among papers addressing this problem are Bandi & Russell (2008), Hansen & Lunde (2006), Zhang, Mykland & Ait-Sahalia
(2005). We follow Barndorff-Nielsen, Hansen, Lunde & Shephard (2008) and Barndorff-Nielsen, Hansen, Lunde & Shephard
(2009) utilizing their realized kernel methods.

4 Various papers have addressed the problem of jumps. These include Andersen, Bollerslev & Diebold (2007), Barndorff-
Nielsen & Shephard (2004), Corsi, Pirino & Reno (2008) and Fissel & Sun (2010).

5We use a multi horizon model developed in Corsi (2009) for this.
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frictions there would be little argument about what to do. Use of a simple highest possible
frequency estimate of the daily variance would be optimal. Unfortunately, financial markets
deviate from this idealized world, and realized volatility can be measured in several ways.

Market frictions and market microstructure noise degrade the performance of ultra high
frequency estimators and have led to a large debate about the optimal frequency for sam-
pling prices. This also has led to more sophisticated estimators that use multiple sampling
frequencies and nonparametric kernel estimators. A second problem is that price series may
contain jumps. The use of Bipower estimators as in Andersen et al. (2007) and Barndorff-
Nielsen & Shephard (2004) can give a possible “jump free” estimate of integrated volatility
over a day.

This paper will concentrate on the kernel based volatility estimate provided in the Oxford-
Man realized volatility (Heber et al. 2009), version 0.2. This data set provides detailed
estimates of realized volatility for several different financial returns series, using three types
of realized volatility estimators.6

The constructed volatility series are built using a weighted sum of a range of covariates
over the intraday returns series given in xj.

K(X) =
H∑

h=−H

k
( h

H + 1

)
γh (1)

γh =
n∑

j=|h|+1

xjxj−|h| (2)

The weighting uses the Parzen kernel function given by,

k(x) =


1− 6x2 + 6x3 0 ≤ x ≤ 1/2

2(1− 1)3 1/2 ≤ x ≤ 1

0 x > 1

(3)

The value K(X) is estimated daily using high frequency returns, xτ over each day, t. We will
refer to this as the realized volatility on day t, or RVt. Barndorff-Nielsen et al. (2008) rec-
ommend this kernel since it has several appealing features including guaranteed nonnegative
weights, and k′(0) = k′(1) = 0.

Our objective is to link this to several volatility measures using only range based infor-
6 Also, see Barndorff-Nielsen et al. (2008) for details. Barndorff-Nielsen et al. (2009) also give details on critical data cleaning

procedures that are used before volatilities are estimated.
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mation.7 The first was developed by Parkinson (1980), and is relatively simple.

Vt,p =
(log(Ht)− log(Lt))

2

4 log(2)
, (4)

where Vt,p is the estimate of daily volatility, and Ht and Lt are the daily high and low
prices, respectively. Garman & Klass (1980) extended the basic range estimator to include
information on the open and closing prices to give,

Vt,gk = 0.5(log(Ht)− log(Lt))
2 − (2 log(2)− 1)(log(Ct)− log(Ot))

2. (5)

Our objective will be to take the kernel estimate of volatility on a given day as a high
precision estimate of the target volatility. We then test the various specifications

Vt,n = g(log(Ht), log(Lt), log(Ht−1), log(Lt−1), . . .) (6)

We will estimate nonlinear forms for g(Y ) using a neural network, and also use nonlin-
ear specification tests to see if there is additional information in residuals beyond the two
high/low range volatility estimates. The neural network is a simple single hidden layer,
feedforward architecture, as in

y =
∑
j

ajf(
∑
k

bj,kxk + bj,0) + a0 (7)

f(u) =
1

1 + e−u
, (8)

where f(u) is the standard logistic function. We also estimate a cubic model to judge whether
the complexity of the neural network is necessary for our problem It is represented as,

dt = log(Ht)− log(Lt) (9)

Vt,c2 = b0 + b1dt + b2d
2
t + b3d

3
t + b4dt−1 + b5d

2
t−1 + b6d

3
t−1. (10)

In this paper, we focus on six stock market index: Dow Jones Industrials, FTSE 100,
Nasdaq 100, Nikkei 225, Russel 2000, and S&P 500. The daily realized volatility series of
these six indexes are from the Oxford-Man realized volatility library, as is described above.
The daily high, low, open, and closing prices of each index come from Yahoo finance. The
period we consider is from January 3, 2000 to March 2, 2012. Table 1 provides the summary

7 Beyond the original papers of Parkinson (1980), and Garman & Klass (1980), there are many applications of range based
volatility estimators. Chou, Chou & Liu (2009) is a recent survey of the literature. Extensions and improvements to these
early estimators are in Kunitomo (1992) and Yang & Zhang (2000). We have tested these, but found they did not change our
conclusions and results. Alizadeh, Brandt & Diebold (2002) is a modern update on the older literature.
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statistics of realized volatility for the six indexes.

3 Range estimates of realized volatility

In this section, we will explore the estimation accuracy and model specification of various
volatility models. First, we treat the daily realized volatility series RVt as the benchmark,
and compare it with the daily series of various volatility measures during the same time
period, denoted by Vt . We measure the estimation accuracy with the mean squared error
and mean absolute error,

MSE =
1

T

T∑
t=1

(RVt − Vt)2 (11)

MAE =
1

T

T∑
t=1

|RVt − Vt)|. (12)

We use a subset of the whole sample to estimate the neural network and cubic regression
that were described in section 2. First, we randomly draw a test sample with replacement
from the whole sample and put it aside. The size of the test sample is 15% of the whole
sample. We then estimate the neural network and cubic regression on the remaining data.
Estimation of the neural network requires drawing two samples from the remaining 85% of
the data. First, a training set will be used for parameter estimation as it is used to estimate
the gradients over which hill climbing takes place. To avoid over fitting a second sample,
the validation set, is drawn from the same pool of data with replacement. Network training
continues until a minimum is reached using sample points from the validation sample. This
process is repeated 1000 times to build an ensemble of neural nets. The forecast is then given
by the simple average across the networks.8 The cubic estimates a single set of parameters
using OLS over the entire estimation (nontraining) sample. Finally, volatility is estimated
using both the Parkinson, and GK based volatility estimators which involves no parameter
estimation. The MSE and MAE for all these volatility measures are then calculated for the
whole sample and the test sample, respectively.

Tables 2 and 3 report the MSE and MAE of the four high-low based volatility measures
for the six stock indexes. For each index, the first row contains the whole sample results,
while the second row contains the test sample results. One may see that for almost all the

8 This technique is known as bagging. It was developed in Breiman (1996), and early applications using multiple networks
for forecasting can be found in Perrone & Cooper (1992), LeBaron & Weigend (1998). Hillebrand & Medeiros (2010) implement
this is a volatility forecasting setting.
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cases, the estimation error of the neural network and cubic regression is much smaller than
that of Parkinson and GK. For example, for the Dow, the test sample MSE falls from 3.01

for the Parkinson based estimator to 0.68 for the neural network,and 0.79 for the cubic. For
the FTSE the MSE drops from 1.77 for Parkinson to 0.37 for the neural network, and 0.53

for the cubic. Table 3 repeats the same results using mean absolute errors. The Dow again
shows a dramatic reduction with the test sample MAE going from 1.18 for the Parkinson
estimate to 0.47 for the neural network, and 0.54 for the cubic. A reasonable summary across
all the series is that reductions in both MSE and MAE are dramatic when moving from the
traditional range based estimators to the nonlinear estimators. The relative performance of
the cubic model, in most cases, is comparable with the neural network.

The intuition for the advantage of the neural network and cubic regression over Parkinson
and GK is obvious. By using a richer nonlinear relationship between high-low ranges and
volatility, these two volatility measures allow for more flexibility in estimation, and therefore
lead the estimation closer to the target of the realized volatility. Figures 3 and 4 graphically
present this intuition. To plot these two figures, we sort all the data points according to the
values of high-low range, and divide the whole sample into 120 bins according to the high-low
range. The difference between the highest and the lowest high-low range in each bin is the
same, while the number of data points falling into each bin is varying, with fewer observations
falling into the bins with the extreme high-low ranges. We take the average of each volatility
measure in each bin, and plot these averages against the median value of high-low ranges in
each bin in a log-log space. Figure 3 contains the plots for all six indices, while figures 4 and
5 present only the the Dow and Nikkei, and also add the Bipower adjusted volatility estimate
from the volatility database in the lower panel of each figure.9 The scatter points represents
the observed realized volatility, which implies an obviously non-linear relationship between
the high-low range and volatility. The Parkinson estimate forces a linear relationship between
these two variables, and similarly, the relationship approximated by the GK method is almost
linear as well. In contrast, the neural network and cubic regression correctly captures the
deviation from linearity between the two variables in the data. It also appears to show some
better performance than the cubic in the tails where the cubic begins to diverge from the
target. The nonlinear evidence does not change much when we use to the Bipower volatility
estimate. This gives some initial indication that jumps are probably not the cause for our
nonlinear relationship.

So far, we have provided evidence for the advantage of the neural network and cubic
regression in estimating daily volatility using range information as inputs. We will now

9The Bipower volatility estimate attempts to remove jumps from the volatility estimate. See Barndorff-Nielsen & Shephard
(2004) for details.
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formally test the various model specifications. We apply the residual-based specification test
proposed by Ellison & Ellison (2000). For each volatility estimation model, we calculate the
model residual series εt as

εt = RVt − Vt (13)

where RVt is the observed realized volatility and Vt denotes the estimated model volatility.
For each volatility estimate the test statistic is constructed as

T =
~ε′W~ε√

2s(ŨWŨ)
+ FSC (14)

In equation 14, ~ε denotes the vector of residual series εt. Ũ is a diagonal matrix with the
iith element being εii. W is a symmetric matrix calculated as X ′X, where X is the model
inputs. For any matrix A, function s(·) is define as s(A) =

∑
i,j(a

2
ij)

1
2 , with aij being the

ijth element in matrix A. FSC is calculated as

FSC =
1 + rank(X)

sqrt(2)s(W )
, (15)

where X and W is defined as above. Under the null hypothesis that the model is correctly
specified, the test statistic T follows a standard normal distribution.

Table 4 exhibits the specification test results for all the six indexes. For each index, the
test statistics are presented in the first row, while the corresponding p-values are shown in
the second row. A small p-value implies a rejection of the null hypothesis, and therefore a
mis-specification of the model. One may see that for the Parkinson and GK models, the null
hypothesis is rejected at the 1% significance level for all the series. The neural network and
cubic models show much weaker evidence of model misspecification. The p-values are larger
than 10% in about half the cases, and both specifications are rejected at the 5% level for
only one series, the Nikkei. These results provide strong evidence for model misspecification
for the traditional range estimators, and some supporting evidence that we cannot reject the
two nonlinear specifications that we have considered.

As an initial exploration in to what might be generating our results we replicate our
previous figures with returns following a simulated intraday process with and without jumps.
Volatilities for the diffusion component of returns are drawn randomly for each day from a
log normal distribution,

σ2
t ∼ eN(µV ,σ

2
V ) (16)

with µV = −9.5 and σ2
V = 1 which are reasonable given our initial summary statistics. We
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break days down into 78 sub periods which corresponds to five minute sampling over a 6.5
hour trading day. The variance of returns over the sub period is then σ2

t /78 conditional on
no jump arriving. Using results from Andersen, Benzoni & Lund (2002) we calibrate jumps
as arriving Poisson with a daily arrival rate of 0.02. Jumps are assumed to be normally
distributed with a standard deviation equal to the daily return standard deviation.10 Figure
6 repeats the previous plots for the case with no jumps (upper panel) and jumps (lower
panel). Neither case shows the kind of richer nonlinear specification that we saw in the real
data. The realized volatility levels are distributed around the Parkinson volatility estimate.
Also, there is no dramatic visual impact of jumps. It is important to realize that what we
expect the jump process will look like in these figures is not clear. It impacts both types of
estimators, since neither of them is a jump filtered volatility estimate. These figures can only
be viewed as preliminary, but they suggest that jumps are not likely to generate the kinds of
connections we are seeing between high/low range information and realized volatility levels.

4 Time series forecasting

In this section we will explore the time series forecasting properties of our various volatility
estimators. We are interested in comparing the nonlinear high/low range estimators with
the realized volatility estimates when used to forecast future volatility.

We follow Andersen, Bollerslev, Diebold & Labys (2003) by log transforming our daily
volatility estimates. Figure 2 presents the histogram of the logarithm of realized kernel for
six indexes. In most cases, the empirical distribution of the logarithm of realized kernel is
very close to a normal distribution, which is denoted by the solid curve. We then build
time series forecasts for the logged volatility series. Figure 1 presents the time series of
the realized kernel for all six indexes. The figure shows general features of persistence. In
financial markets volatility exhibits extreme persistence with positive autocorrelations going
out many periods.11

To deal with this persistence two basic methods have been used. Andersen et al. (2003)
have used a fractional filter on the data which adjusts for a true long memory process.
However, some simpler multi-horizon models appear to capture the long range persistence.12

This has been formalized in a parsimonious time series model in Corsi (2009) that uses three
10We have experimented with this parameter up to 20 standard deviations, and our results do not qualitatively change.
11 See Granger & Ding (1996) for early evidence and Andersen et al. (2003) for evidence using realized volatility measures.
12 See, for example, Ding, Granger & Engle (1993) and LeBaron (2001).

8



different horizon lengths to generate near long memory in the volatility time series. Let

RVj:k =
k∑
i=j

RVi, (17)

where RVj:k will represent the realized volatility over a given lagged time period. The muti-
horizon model can be represented as,

RVt = β0 + β1RVt−1 + β2RVt−5:t−1 + β3RVt−21:t−1 + εt. (18)

We follow this structure, but will replace realized volatility with our other volatility
estimates in various specifications. For example, other volatility estimates can be aggregated
as in,

Vj:k =
k∑
i=j

Vi. (19)

We can then projected realized volatility at time t on lags of Vt as in

RVt = β0 + β1Vt−1 + β2Vt−5:t−1 + β3Vt−21:t−1. (20)

We log transform this equation to,

rvt = log(RVt) = β0 + β1 log(Vt−1) + β2 log(Vt−5:t−1) + β3 log(Vt−21:t−1). (21)

The volatility forecast is then constructed using the estimated parameters, β̂j, from a simple
OLS regression giving a forecast

Et(rvt+1) = β̂0 + β̂1 log(Vt) + β̂2 log(Vt−4:t) + β̂3 log(Vt−20:t). (22)

We compare all the potential volatility estimates for Vt including the obvious base case with
lagged RV itself, Vt = RVt. We estimate the mean squared error as,

MSE =
1

T

T∑
t=1

(log(RVt)− log(R̂V t))
2. (23)

We estimate both the in-sample and out-of-sample forecasting error described in equation
23. To estimate the in-sample forecasting error, we estimate equation 22 over the whole
sample and compare the forecast volatility with the real data. We also estimate out of
sample forecast performance using an expanding recursive window starting at t = 500 days,
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and expanding as each new day is added to the forecast. This set of forecasts use RVt as
the forecast target, varying the right hand side variables, including lagged RV , along with
our other volatility forecasts. This experiment presents a useful benchmark, but they are
not a measure of what a forecaster without access to the realized volatility measures could
actually use. To better simulate this situation we reestimate the previous multi-horizon
forecasting models using the different high/low range volatility measures as both dependent
and independent variables as in,

log(Vt) = β∗0 + β∗1 log(Vt−1) + β∗2 log(Vt−5:t−1) + β∗3 log(Vt−21:t−1). (24)

The parameter estimates, β̂∗j , are again determined by OLS to generate forecasts V̂t+1. We
estimate the mean squared error using these new volatility estimates, but using the RVt
volatility as the true target as in,

MSE∗ =
1

T

T∑
t=1

(log(RVt)− log(V̂t))2, (25)

and

MAE∗ =
1

T

T∑
t=1

|log(RVt)− log(V̂t)|. (26)

Similarly, we estimate the forecasting error for both the in-sample and out-of-sample fore-
casting regression.

Table 5 and Table 6 summarize the in-sample and out-of-sample MSE and MSE* for the
six indexes. 13 We will concentrate here on the out of sample results in table 6, but most of
these are similar when evaluated in sample. For each index, the first and fifth row contains
the MSE and MSE* for the forecasting models with different volatility estimators as the
predictors. For all the cases, the smallest forecasting error occurs in the first column where
realized volatility itself serves as the predictor in the forecasting regression. This should be
expected. We do not expect to beat the RV model in forecasting itself. It is interesting that
for the MSE measure there appears to be little difference across the range based volatility
estimators.

Turning to the more realistic MSE* measure gives a different picture. For several series
the neural network and cubic volatility models show improvement over the Parkinson and
GK models. For example, for the Dow the MSE* for Parkinson is 0.87, and the neural
network and cubic models drop these to 0.37 and 0.34 respectively. Results for NASDAQ

13We have found similar results for MAE and MAE*
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also show improvements in MSE*. It falls from 0.50 for Parkinson to 0.42 and 0.41 for the
neural network and cubic respectively. For the other four series the forecast comparisons are
basically a tie between the traditional and nonlinear range estimation methods.

Next we estimate the Diebold/Mariano test (Diebold & Mariano 1995), to see whether the
differences between the forecasting models are significant. For any two forecasting models
with the same target and different sets of predictors, we define dηt = η1t −η2t as the difference
between the forecasting errors in the two models at time point t, where η1t and η2t refer to
the forecast error in the two models, respectively. With the series of dηt(t = 1, 2, ..., T ), we
can construct the test statistic as

Z =
1
T

∑T
t=1 dηt

σ̂dη
(27)

where σ̂dη refers to the Newey-West standard deviation of dηt. Under the null hypothesis that
the forecast accuracy of the two models is the same, the test statistic Z follows a standard
normal distribution. Following this procedure we implement several pairwise comparisons of
our models. In the rows labeled “versus RK” the column model is compared to the realized
kernel volatility in terms of time series forecasting. The null hypothesis is that the MSE
forecasts are the same for the two models. Low p-values indicate that the low MSE model is
a significant improvement over the other model in the pair. Using table 6, the out of sample
forecast, the row labeled versus RK reports the p-value for the forecast comparison between
the range estimators and the RK volatility estimate. It shows that the gains in MSE for
this model are significant against all the other estimators. Again, the comparisons of MSE*
for the nonlinear models versus Parkinson and GK are most relevant. The test shows that
the gains for the Dow and NASDAQ are significant. For all other series the test results are
either mixed or insignificant.

Our final predictive tests follows previous studies in using a risk management inspired
objective. We will use our volatility forecasts to estimate one period ahead VaR thresholds,
and analyze their performance. We will use the Corsi volatility model to forecast conditional
variances which will be used to estimate conditional distribution quantiles as in Andersen
et al. (2003).14

Based on the forecasting regression we estimate next period’s standard deviation using,

V̂
1/2
t+1 = Et(V

1/2
t+1 ) = e(1/2)Etvt+1+(1/8)σ2

v , (28)
14Also, see Christoffersen (2012 forthcoming) for a survey on backtesting and reporting VaR exceptions.
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which can be used to standardize the return at t+ 1.

st+1 =
rt+1

V̂
1/2
t+1

(29)

We further compare the returns standardized by forecast standard deviation with the cer-
tain percentiles of appropriate distributions. We report VaR exceptions, or the estimated
probability of returns falling below these quantiles. Specifically, we compare the returns
standardized by the standard deviation forecast with different volatility measures with the
5th percentile of three types of target distributions: a normal distribution with the mean
equal to the historical mean of st in Equation 29 and the standard deviation equal to 1, a
student t-distribution with the mean equal to the historical mean of st and the degree of
freedom equal to 4; and the empirical distribution of st from the data. The last distribution
is estimated by taking the full sample returns and dividing each by the standard deviation
for that day given by the contemporaneous realized volatility estimator.

Table 8 reports the fraction of returns standardized by the forecast standard deviations
that lie outside the 5th percentile of the target distribution, i.e. the 5% VaR.15 The distance
between this 5% VaR and its theoretical value of 0.05 depends on both the choice of target
distribution and the choice of volatility measures to predict the standard deviation of return.
The deviation of the fraction from 0.05 is largest when the target distribution is normal.
These values are reported in the first 6 rows. For most of the series and volatility models
we see that the normal tails are too thin with most estimated exceptions exceeding the 5%
target.

The next 6 rows repeat this test, but the normal distribution is replaced with a student-
t distribution with 4 degrees of freedom. In all cases we see exceptions now much closer
to the 5% target. There is some indication of improvements in the neural network and
cubic estimates which we will demonstrate graphically. The last rows of table 8 calculate
exceptions using the empirical distribution of standardized returns. There again appear to
be advantages to the neural net and cubic estimates.

The gains from the nonlinear models appear interesting, but are difficult to see in the
tables. The gains become more dramatic in figure 7 which provides a graphical comparison
of the Value at Risk calculated with return standard deviation forecast by different volatility
measures, with the empirical distribution standardized returns as the target distribution. In
the box plots, each box represents one column of Table 7 or Table 8 with 5% VaR calculated
with standard deviation forecast by one specific volatility measure across six different indexes.

15 Similar results are found for in sample volatility estimates.
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The whiskers show the largest and smallest exception probabilities, and the boxes represent
the next to largest, and next to smallest values. Finally, the lines are the mean of the third
and fourth ranked value (the median). Visually, this shows that the performance of the neural
network and cubic volatility estimates in terms of VaR exceptions is much improved over
the classical range estimators, and not far from the RK estimator. While all the volatility
models have a median close to the 5% target, the variability across the different series is
much smaller for the nonlinear models.

5 Conclusions

In this paper we have examined the connections between realized and range based volatility
estimators. We assume the realized volatility estimators, which are adjusted for micro struc-
ture noise, as our best estimate of intraday variances. We then project these on high low
range information using both traditional range formulas as well as nonlinear flexible func-
tions. We find that in daily series the nonlinear forms offer significant improvements over the
traditional range estimators in terms of fitting realized volatility targets. We also explore
these modified volatility estimates in terms of time series forecasting in some simple risk
management related applications. We find performance which is comparable to the realized
volatility measures, and often greatly improves on the other range based estimators.

Our results can therefore be viewed both as an extensive specification test, and as a fore-
casting test. As a specification test the results are strong and decisive. There are nonlinear
specifications using daily high/low pricing information that fit daily realized volatility better
than the classical estimators which are commonly used. Furthermore, we show that there is
more information than what is presented in the functional forms of these volatility represen-
tations. This is an interesting result for what is driving prices at high frequencies. We show
with some simple monte-carlo experiments that this is indeed the case. Looking at simulated
data driven by a Brownian motion along with discrete jumps we show that it is unlikely that
the simple addition of jumps could drive our results. It is still possible that micro-structure
related noise is entering in a complex fashion that impacts our high/low ranges in a way that
generates the nonlinear patterns we see, but this remains a topic for future study.

While we use a very general flexible functional form in the neural network in our nonlinear
function fitting, our results suggest that the nonlinear patterns may not be too complicated,
and may be well represented by a simple cubic model. We find a cubic model compares
favorably with our neural network specification in a wide range of tests. Given its simplicity
relative to the neural network, it would seem the obvious choice for researchers interested in
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applying these results. In future work we may explore the use of cubic splines which could
replicate the core of the cubic model’s fit along with some linear discipline in the tails.

Our second task was to put these modified volatility models to the test in a risk forecasting
context. Our procedure followed much of the realized volatility literature in building basic
time series models in log volatility space. We built volatility forecasts with assumptions that
simulated a world where the realized volatility values were not known. We are doing this to
simulate the performance of the range estimators in situations where high frequency data
is unavailable. After many experiments our results can be summarized in two key results.
First, the nonlinear range based estimators generate performance which is remarkably close
to that from estimators using actual realized volatility numbers, and high frequency data.
Second, for several series we find that the nonlinear volatility series significantly improve on
the two competing classical range based estimators.

This research certainly does not close the book on what we know about volatility and
range based estimation. As a matter of fact, we believe we open some new puzzles, and leave
a lot of work for the future. It is a little distressing that the functional form pictures were not
more similar across the different series. While the patterns are all nonlinear the exact form of
the mapping from realized volatility to high low ranges appears to change across the markets
we study. These may be a hinderance to using these models in real world applications, or
it may be helpful in determining if micro structure noise is impacting our results.16 We are
also very interested in how well these models will do when we carry them across time. One
useful application is to build very long range, higher quality, daily volatility models using
the extensive amount of historical high/low range information that is available. This is part
of our on going research.

We have shown the dramatic improvements in range based volatility estimation by using
nonlinear model specifications. We believe this opens new questions about the processes
driving high frequency financial prices, and provides some new tools which should be used
in many applications of dynamic risk management and forecasting.

16This would assume that we can model how micro structure noise might vary with the different institutions across these
markets.
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Table 1: Realized Volatility Summary
Original Series Mean*104 Std*104 Skewness Kurtosis ACF(1)
Dow 1.33 2.92 13.59 329.90 0.65
FTSE 1.05 1.73 6.92 81.08 0.66
NASDAQ 1.77 3.04 7.95 116.48 0.65
Nikkei 1.26 2.05 8.75 111.25 0.72
Russell 2000 1.36 2.52 9.57 164.34 0.66
SP500 1.40 2.96 13.32 331.09 0.63

Logged series Mean Std Skewness Kurtosis ACF(1)
Dow -9.55 0.99 0.61 3.71 0.82
FTSE -9.76 1.06 0.25 2.88 0.86
NASDAQ -9.28 1.07 0.40 2.85 0.87
Nikkei -9.41 0.87 0.32 3.80 0.77
Russell 2000 -9.45 0.94 0.61 3.93 0.75
SP500 -9.51 1.03 0.49 3.42 0.82

Basic summary statistics.
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Table 2: Volatility model estimated MSE
Parkinson GK ANN Reg

Dow WS 4.783 6.390 1.827 1.608
TS 3.013 4.718 0.680 0.790

FTSE WS 2.356 1.350 0.741 0.816
TS 1.770 1.053 0.371 0.527

NASDAQ WS 12.701 7.302 1.914 2.387
TS 10.650 7.336 2.490 2.778

Nikkei WS 2.090 1.518 0.547 0.709
TS 4.511 3.949 0.461 0.757

Russell 2000 WS 3.846 2.658 1.060 1.592
TS 2.542 1.369 1.471 4.191

SP500 WS 3.081 1.887 1.772 2.195
TS 2.438 0.903 2.147 3.194

Mean Squared Error of different volatility measures.
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Table 3: Volatility model estimated MAE
Parkinson GK ANN Reg

Dow WS 1.235 1.563 0.544 0.606
TS 1.183 1.522 0.465 0.544

FTSE WS 0.587 0.483 0.365 0.380
TS 0.565 0.466 0.328 0.360

NASDAQ WS 1.381 1.108 0.626 0.652
TS 1.520 1.151 0.721 0.741

Nikkei WS 0.511 0.463 0.347 0.363
TS 0.561 0.555 0.358 0.383

Russell 2000 WS 0.795 0.590 0.489 0.527
TS 0.741 0.541 0.482 0.571

SP500 WS 0.604 0.515 0.447 0.498
TS 0.589 0.472 0.429 0.487

Mean Absolute Error of different volatility measures..
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Table 4: Specification tests
Parkinson GK ANN Reg

Dow 160.284 274.310 2.823 0.873
(0.000) (0.000) (0.002) (0.191)

FTSE 39.787 23.197 1.028 1.408
(0.000) (0.000) (0.152) (0.080)

NASDAQ 53.627 75.621 0.503 1.257
(0.000) (0.000) (0.307) (0.104)

Nikkei 3.892 10.079 1.670 1.728
(0.000) (0.000) (0.047) (0.042)

Russell 2000 33.298 5.009 1.660 1.127
(0.000) (0.000) (0.048) (0.130)

SP500 2.837 16.418 1.029 1.098
(0.002) (0.000) (0.152) (0.136)

Results of specification test.
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Table 5: Volatility forecasts MSE: In sample
RK Parkinson GK ANN Reg(Cubic)

Dow MSE 0.270 0.334 0.374 0.330 0.343
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.134 0.011*
versus GK 0.000*** 0.000***

Dow MSE* 0.270 0.887 1.165 0.373 0.344
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.000*** 0.000***
versus GK 0.000*** 0.000***

FTSE MSE 0.240 0.281 0.286 0.275 0.289
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.003*** 0.003***
versus GK 0.008*** 0.298

FTSE MSE* 0.240 0.308 0.294 0.316 0.319
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.087* 0.069*
versus GK 0.005*** 0.004***

NASDAQ MSE 0.215 0.332 0.338 0.323 0.355
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.023** 0.008***
versus GK 0.006*** 0.045**

NASDAQ MSE* 0.215 0.446 0.427 0.391 0.393
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.000*** 0.001***
versus GK 0.005*** 0.040**

Nikkei MSE 0.251 0.260 0.268 0.253 0.261
versus RK 0.018** 0.000*** 0.243 0.014**
versus P 0.008*** 0.328
versus GK 0.001*** 0.083*

Nikkei MSE* 0.251 0.346 0.382 0.296 0.292
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.002*** 0.000***
versus GK 0.000*** 0.000***

Russell 2000 MSE 0.277 0.332 0.317 0.321 0.344
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.000*** 0.000***
versus GK 0.225 0.000***

Russell 2000 MSE* 0.277 0.347 0.325 0.341 0.354
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.135 0.174
versus GK 0.068* 0.000***

SP500 MSE 0.261 0.270 0.277 0.264 0.287
versus RK 0.022** 0.000*** 0.243 0.000***
versus P 0.001*** 0.000***
versus GK 0.000*** 0.016**

SP500 MSE* 0.261 0.312 0.378 0.321 0.299
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.306 0.100*
versus GK 0.005*** 0.000***

Time series forecasting, Mean Squared Error, in sample. ’***’,’**’, and ’*’ denotes significance at 1%, 5%,
and 10% significance level, respectively.
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Table 6: Volatility forecasts MSE: Out of sample
RK Parkinson GK ANN Reg(Cubic)

Dow MSE 0.273 0.388 0.442 0.373 0.391
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.015** 0.272
versus GK 0.000*** 0.000***

Dow MSE* 0.273 0.873 1.140 0.370 0.342
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.000*** 0.000***
versus GK 0.000*** 0.000***

FTSE MSE 0.239 0.288 0.291 0.282 0.298
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.004*** 0.003***
versus GK 0.051* 0.113

FTSE MSE* 0.239 0.313 0.300 0.317 0.321
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.290 0.172
versus GK 0.039** 0.021**

NASDAQ MSE 0.216 0.350 0.351 0.337 0.371
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.012** 0.028**
versus GK 0.018** 0.051*

NASDAQ MSE* 0.216 0.501 0.475 0.422 0.411
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.000*** 0.000***
versus GK 0.001*** 0.003***

Nikkei MSE 0.258 0.269 0.275 0.263 0.272
versus RK 0.011** 0.002*** 0.117 0.005***
versus P 0.034** 0.189
versus GK 0.011*** 0.323

Nikkei MSE* 0.258 0.328 0.356 0.314 0.305
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.243 0.105
versus GK 0.027** 0.006***

Russell 2000 MSE 0.269 0.354 0.331 0.339 0.365
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.000*** 0.001***
versus GK 0.097* 0.000***

Russell 2000 MSE* 0.269 0.325 0.325 0.315 0.339
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.032** 0.013**
versus GK 0.199 0.067*

SP500 MSE 0.265 0.278 0.284 0.271 0.296
versus RK 0.003*** 0.000*** 0.076* 0.000***
versus P 0.000*** 0.000***
versus GK 0.000*** 0.003***

SP500 MSE* 0.265 0.317 0.382 0.337 0.315
versus RK 0.000*** 0.000*** 0.000*** 0.000***
versus P 0.147 0.424
versus GK 0.037** 0.000***

Time series forecasting, Mean Squared Error, out of sample. ’***’,’**’, and ’*’ denotes significance at 1%,
5%, and 10% significance level, respectively.
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Table 7: VaR: In sample
RK Parkinson GK ANN Reg(Cubic)

Gaussian Dow 0.080 0.033 0.024 0.075 0.079
FTSE 0.117 0.091 0.098 0.109 0.108
NASDAQ 0.162 0.113 0.121 0.148 0.152
Nikkei 0.139 0.149 0.156 0.132 0.135
Russell 2000 0.153 0.121 0.147 0.149 0.146
SP500 0.096 0.095 0.110 0.083 0.079

Student-t(4) Dow 0.038 0.009 0.006 0.036 0.038
FTSE 0.068 0.046 0.053 0.063 0.060
NASDAQ 0.110 0.055 0.062 0.093 0.102
Nikkei 0.085 0.094 0.098 0.075 0.082
Russell 2000 0.095 0.055 0.079 0.085 0.079
SP500 0.043 0.049 0.055 0.038 0.035

Empirical Dow 0.065 0.023 0.017 0.059 0.058
FTSE 0.069 0.048 0.053 0.064 0.061
NASDAQ 0.049 0.013 0.015 0.037 0.046
Nikkei 0.074 0.080 0.086 0.066 0.070
Russell 2000 0.059 0.035 0.048 0.056 0.055
SP500 0.062 0.064 0.077 0.056 0.048

Time series forecasting, Value-at-Risk, in sample.
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Table 8: VaR: Out of sample
RK Parkinson GK ANN Reg(Cubic)

Gaussian Dow 0.069 0.029 0.022 0.067 0.070
FTSE 0.101 0.075 0.082 0.091 0.089
NASDAQ 0.134 0.081 0.088 0.116 0.123
Nikkei 0.127 0.133 0.139 0.117 0.122
Russell 2000 0.135 0.105 0.135 0.137 0.129
SP500 0.081 0.081 0.092 0.070 0.070

Student-t(4) Dow 0.033 0.008 0.004 0.034 0.037
FTSE 0.058 0.036 0.042 0.049 0.050
NASDAQ 0.078 0.033 0.039 0.066 0.074
Nikkei 0.076 0.080 0.087 0.067 0.070
Russell 2000 0.080 0.050 0.067 0.074 0.072
SP500 0.039 0.042 0.048 0.035 0.035

Empirical Dow 0.065 0.025 0.018 0.063 0.064
FTSE 0.067 0.047 0.051 0.062 0.058
NASDAQ 0.044 0.013 0.014 0.034 0.043
Nikkei 0.073 0.078 0.085 0.064 0.067
Russell 2000 0.062 0.040 0.055 0.062 0.061
SP500 0.060 0.063 0.075 0.054 0.050

Time series forecasting, Value at Risk, out of sample.
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Figure 1: Realized volatility time series
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Figure 2: Log Realized volatility densities
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Figure 3: Volatility and H-L ranges for all the six indexes
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Figure 4: Volatility and H-L ranges for Dow
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Figure 5: Volatility and H-L ranges for Nikkei
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Figure 6: Simulated jump returns
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Figure 7: Box Plots of Value-at-Risk for Different Volatility Measures
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The lower edge, upper edges, and the inside line of each rectangular represent the 25 percentile, 75 percentile,
and median of data in each column, respectively. The whiskers below and above each rectangular refer to the
minimum and maximum values of data in each column, respectively. The dash line denotes the theoretical
value of 0.05.
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