
Extreme Value Theory and Fat Tails in Equity Markets

Blake LeBaron1 and Ritirupa Samanta2

Abstract

May 2004

Equity market crashes or booms are extreme realizations of the underlying return
distribution.  This paper questions whether booms are more or less likely than crashes
and whether emerging markets crash more frequently than developed equity markets. We
apply Extreme Value Theory (EVT) to construct statistical tests of both of these
questions. EVT elegantly frames the problem of extreme events in the context of the
limiting distributions of sample maxima and minima.  This paper applies generalized
extreme value theory to understand the probability of extreme events and estimate the
level of “fatness” in the tails of emerging and developed markets.

 We disentangle the major “tail index” estimators in the literature and evaluate
their small sample properties and sensitivities to the number of extreme observations. We
choose to use the Hill index to measure the shape of the distribution in the tail. We then
apply nonparametric techniques to assess the significance of differences in tail thickness
between the positive and negative tails of a given market and in the tail behavior of the
developed and emerging region.  We construct Monte Carlo and Wild Bootstrap tests of
the null of tail symmetry and find that negative tails are statistically significantly fatter
than positive tails for a subset of markets in both regions.  We frame group bootstrap tests
of universal tail behavior for each region and show that the tail index is statistically
similar across countries within the same region. This allows us to pool returns and
estimate region wide tail behavior. We form bootstrapping tests of pooled returns and
document evidence that emerging markets have fatter negative tails than the developed
region. Our findings are consistent with prevalent notions of crashes being more in the
emerging region than among developed markets. However our results of asymmetry in
several markets in both regions, suggest that the risk of market crashes varies
significantly within the region.   This has important implications for any international
portfolio allocation decisions made with a regional view.
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Introduction

The exact distribution of financial returns remains an open question. Stylized facts about the distribution of

financial returns generally concur that at monthly and longer horizons, return series appear to be normally

distributed. However at weekly, daily and higher frequencies, return distributions consistently display non-

normal features. One such characteristic that arises across financial assets, from foreign exchange returns

(De Vries,1991)  to commodities such as cotton or wheat (Mandelbrot, 1963) is “fat tails”. Fat tails are

defined as tails of the distribution that have a higher density than that what is predicted under the

assumption of normality. For example, a distribution that has an exponential decay (as in the normal) or a

finite endpoint is considered thin tailed, while a power decay of the density function in the tails is

considered a fat tailed distribution.

This paper draws on extreme value theory to frame the question of fat tails and study how tail

characteristics vary between markets and regions.  Fat tails are consistent with a variety of financial

theories.  Herding theories rely on asymmetric or noisy information to create cascades in particular

directions resulting in the clustering of extreme events. They are also consistent with theories of

asymmetric response to news.  For instance, good news will raise prices but also increase price volatility,

raising  risk premia and dampening the market rise. On the other hand, with bad news, the decline in prices

is met with a rise in volatility causing further decline in the same direction.  This might explain the

common perception that busts are more probable and extreme than market booms.

This study poses the following questions. Firstly are return distributions asymmetric? Recent

behavioral finance literature abounds with evidence of loss aversion and nonlinear perception of risk as

investors typically perceive crashes as being more painful and probable than booms. We aim to see if the

differences between extreme positive and negative realizations of the return distribution are statistically

demonstrable. Secondly are fat tails more prevalent in emerging equity markets? Evidence of this would be

consistent with the common view that emerging markets are less efficient than developed markets.

Section I opens with a discussion of extreme value theory and its implications for our study of fat

tails.   Section II reviews, estimates and compares a range of tail index measures that are possible

candidates for characterizing tail behavior. Given these results, Section III applies the Hill index to estimate
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and compare tail behavior across tails through monte carlo and bootstrapping methods. Section IV applies

monte carlo techniques to compare tail features between markets in developed and emerging regions.

Finally Section V draws together conclusions from the various tests and discusses their implications for risk

management.

I. Extreme Value Theory

Extreme value theory provides a framework to formalize the study of behavior in the tails of a

distribution.  Critical questions relating to the probability of a market crash or boom require an

understanding of the statistical behavior expected in the tails.  EVT allows us to use extreme observations

to measure the density in the tail.  This measure can be extrapolated to parts of the distribution that have yet

to be observed in the empirical data. It can also be mapped onto distributions with specific tail behavior. In

this way we can simulate a theoretical process that captures the extreme features of the empirical data and

improve the accuracy of estimated probabilities of extraordinary market movements.

According to the central limit theorem, the normal distribution is the limiting distribution of

sample averages. A parallel idea exists when discussing sample extrema.  A class of extreme value

distributions characterize the possible distributions of sample maxima.  The Fisher-Tippet theorem is

analogous to the CLT and uses the tail index to unify the possible characterizations of the density function

of an extreme value distribution.  Intuitively these functions represent three possibilities for the decay of the

density function in the tail. These three possibilities can be mapped onto different domains of attraction, the

Gumbel, Frechet and Weibull limiting distributions.

a) The tail can decay exponentially with all finite moments; these are the standard cases of the

normal, log normal, gamma etc .

b)  It can decay by a power, as in the cases of the stable Paretian, Cauchy and student t distributions.

These are no longer integrable when weighed by the tail probabilities, hence leading to “ fat tails”.

c) The tail can decay with a finite tail index; this will be a thin tailed distribution with a finite upper

endpoint.

Suppose  X1, X2, X3   are a sequence of stationary random variables that may be either iid or dependent

with a common distribution function F(x) = Pr{Xt < x}.  For the first set of n observations, we get the

maxima M1 .  The next set of n observations of X2 yields the next maximum M2.   In this way from n*N

observations one would get N observations of the maxima. Extreme Value Theory tells us that even without
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exact knowledge of the distribution of the parent variable (X) we can derive certain limiting results of the

distribution of M.  In order to do this, M is first reduced by a location parameter (υ) and a scale parameter

(σ).  This standardized extreme variable has a distribution that is non-degenerate. As the period (n) over

which the maximum is taken tends toward infinity, the Fisher Tippet theorem summarizes three possible

limiting extreme value distributions for this standardized variable.

Formally, one is interested in the conditions under which there exist normalizing constants nn ba ,0>

such that the distribution of the standardized block maxima (Mn) weakly follows a specific type of extreme

value distribution function G.  These three types of distributions map onto the tail possibilities described in

(a-c) above.

Definition 1: A nondegenerate distribution function G is called max-stable if there exist real constants
nn ba ,0>  such that for all real x and n=1,2,….

)()( xGbxaG nn
n =+

Then G(x) is of one of the following three forms:

Type I:
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Type III:
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The unifying feature across these distributions is the shape parameter (α).  This captures the weights of the

tail in the distribution of the parent variable (X).  In all cases the scale, location and shape parameters –

here denoted as a, b and α  may vary between the negative and positive tails.

Since we are concerned here with stock market returns that are known to be fat tailed, we can rule

out the possibility of a type I distribution. Since returns are theoretically unbounded, we can also exclude

the type III limiting distribution. Thus we can focus on the Frechet domain of attraction which encompasses

numerous distributions ranging from the student-t to the stable.  In this domain, α is related to the maximal

order moment. This means that moments of order r greater than (α) are infinite and those less than (α) are

finite and well-defined. Hence the student t distribution has a shape parameter α>= 2 and the stable
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distribution has a tail parameter 0< α <2. The student t has a well defined mean and variance, while the

stable has a mean but not a finite variance This further points to the importance of the accuracy of the shape

parameter estimate.

The three distributions defined above are unified under the Generalized Extreme Value

distribution expressed by Jenkinson & VonMises(1955). Here the tail index (τ) is related to the shape

parameter α as  τ=1/α. The tail index in the expression below allows us to discriminate between the three

different types of distributions decribed above. In this expression,  τ=0 indicates a Gumbel distribution,

τ<0 indicates a Frechet distribution and τ>0 implies a Weibull distribution.
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II.Tail Estimation Methods and the Optimal Tail Size

Extremal theory leads to the generalized extreme value distribution formula that maps onto three

types of limiting distributions. In order to discriminate between these it is necessary to estimate the tail

index τ . The behavior of extremes in the tails could be determined by directly estimating the three

parameters relating to scale (the dispersion of extremal events, na  ), location (the average position of

extremes in the distribution, nb  ) and the shape of the tail (the density of extremal observations). The

literature provides two main approaches to tail index estimation.  The first “parametric” school consists of

maximum likelihood and regression methods that are used to directly estimate τandba nn, .  This

method assumes that the extremes are drawn exactly from the limit distribution known as the generalized

pareto distribution.  Jondeau and Rockinger ( 2003) use maximum likelihood methods to estimate these

parameters across a range of emerging and developed market equity returns.  They maximize the following

likelihood function across N samples of non overlapping histories drawn from the full period:

)()(),,....,1,L(x }0/)(1{
1

,,i iabxi

n

i
abnn mIxhbani

NiNNN >−+
=
∏== τττ (Equation 3)

where L(.) is the likelihood function maximized over the scale, location and shape parameters.

They find no significant differences in tail indices across emerging or developed markets although they do

find some asymmetry in the negative tail of Latin American countries. However there are some serious

limitations to this methodology : maximum likelihood methods perform better when tails are thicker

providing  greater observations exceeding the threshold. However in studying developed markets or

relatively short histories of emerging markets, this can be a severe constraint on effective estimation.

Further, its success lies on sharp assumptions about the distribution and dependence structure of the data

used to calibrate the size of subsample histories and to estimate standard errors. Any weaknesses in these

assumptions directly affect the significance of these results.

 Jansen and De Vries (1991) show that under a Type II limit law (in the domain of the Frechet

distribution) where most of our extreme value distributions operate, maximum likelihood methods are

consistent but not the most efficient.  A “non-parametric” school offers efficient estimators directly for

τ that rely on the largest order statistics of the parent distribution and require only that the data generating
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distribution is broadly well behaved.  In order to meet this criteria all that is usually required is that the data

vary regularly at infinity so that for x>0 and 0>α the α−=−−
∞→

xtFtxFLim
t

))(1/)(1( . These

estimators have a long history,  with  Hill’s index first proposed in 1975.

Hill Estimate: (Hill, 1975)
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This estimate has been shown to be a consistent estimate for fat tailed distributions by Mason (1982).

Consequently the limiting distribution of the  ( mmn ), αα −  is asymptotically normally distributed

),0( 2αN  where m is the largest order statistic in the tail (ie. the cutoff point for the tail). Interestingly

consistency is further maintained for a non-independent sequence of the parent variable (X(i)) as long as

the dependence is not extremely strong.  Intuitively the hill index relies on the step size between extreme

observations to extrapolate the behavior of the tails into the broader part of the distribution.  In the case that

a type II limit law applies, this index is a powerful measure of tail behavior.  The primary weakness of this

index lies in the need to determine the size of the tail a priori l.  In it’s first implementation, Du Mouchel

(1979) showed a heuristic 10% of the sample size to perform reasonably in large samples. However Pictet,

Dacorogna, and Muller (1996) show that in finite samples the expectation of the Hill estimator is biased.

Numerous bootstrap and regression methods have also been devised to optimally determine the size of the

tail index and Section III discusses one of these methods and its application.

Pickands (1975) proposed an estimator that defines the tail as less than or equal to a quarter of the

full sample. This estimator has been shown to be weakly consistent. The strong consistency and asymptotic

normality of this estimator has also proved by Dekkers and DeHaan (1993) when the maximum order value

m(n) rises rapidly enough relative to sample size (n).

   2ln/)]/()[ln( 422, mmmm
P
mn XXXX −−=τ (Equation 5)
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Dekkers and De Haan (1990) also propose an extension to the Hill estimate that takes into account its

second moment.
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mnτ  is the standard Hill estimate in equation (4 ) above and
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The authors prove the consistency and normality of D
mn,τ .

In all three estimators above, the final tail index estimate relies heavily on the choice of (m).

While all three require that m(n) approach infinity in some well-behaved fashion, there is little direction as

to how to optimally choose m. The choice of (m) ultimately involves the classic tradeoff between bias and

variance. If (m) is chosen conservatively with few order statistics in the tail, then the tail estimate will be

sensitive to outliers in the distribution and have a higher variance. On the other hand increasing the tail to

extend well into the central part of the distribution creates a more stable index but results in a biased value.

This sensitive tradeoff can be dealt with in a variety of ways. A heuristic device employed here in figures

1-3 is to consider the change in the tail estimate for increasing sizes of m. The levels at which the tail index

begins to plateau is in some sense the ‘optimal’ choice of(m)where it is no longer as sensitive to individual

observations.  Other devices used to make this choice include the quantile – quantile plot and the mean

excess function (Gencay, Selcuk 2003).

Figures 1 and 2 in Appendix A show quantile quantile estimation plots for the developed and

emerging countries respectively. This is the first diagnostic in determining whether the data have fat tails.

QQ plots display the quantiles of the sample data against those of a standard normal distribution. This

serves as a useful device to qualitatively compare the normality of the data without any other assumptions.

If the data were to be drawn from a normal distribution, then we would expect a linear plot along the 45

degree line.  Deviations from linearity are evidence of non-normality.  In this case it is particularly telling

that the greatest deviation occurs at the tails in each case. The central part of the distribution aligns well

with our expectations of a normal distribution. However outside this area the curve in the tails indicates the
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discrepancy from normality. Furthermore the fact that each of the plots curve out ward indicate greater

density in these quantiles of the sample data than in the normal, this is particular evidence of the higher

than predicted (according to normal) probability of extreme observations. Finally we note that the emerging

markets consistently appear to deviate from normality more strikingly than the developed region. Among

developed markets, linearity is maintained for a much larger part of the distribution with curious non-

linearities appearing in the far positive and negative tails.

The difference between emerging and developed market tail indices is visually striking. As a first

test, I modify a method employed to identify structural changes in the tail index across a series.

In a recent paper Quintos et al (2003) test for structural change in the tail index across a time series of

equity returns in the Taiwanese, Thai and Chinese markets. They calculate the tail index on a rolling and

recursive basis.  The recursive hill estimator tα̂  is estimated from the subsample [ 1,…..,t]. At each

iteration, the window size increases until the subsample encompasses the full sample of the data. The

rolling hill estimator t
*α̂  is estimated from a fixed subsample size tw , where at each iteration a single

observation is added and one is eliminated in order to maintain the same window size. Rolling this window

through the series allows the calculation of a series of tail indices and prevents extreme observations seen

in the early part of the sample from influence tail index estimates later in the series. I apply a similar test

here on series created by pairwise merging each developed to an emerging return series.   This is done

simply to see if the recursive or rolling tail index estimated on such a pseudo series reveals any sharp

difference in the tail index.  Figures 5 and 6 in Appendix A plot the average of recursive and rolling shape

parameter estimates (α̂ =1/τ) for each developed country across all pairwise combinations with eight

emerging countries. Therefore the Australian series in Figure 5 is the average of the eight recursive shape

parameter series created by merging Australia to each of the eight emerging markets in the sample.

The average of the recursive shape parameter in Figure 5 is particularly telling, we see that this

index across developed countries is typically higher than the second part of the merged series that

represents emerging market returns. In all cases, the average tail index declines sharply once the estimator

begins to include observations from the emerging market part of the series. We also find that typically the

shape parameter is greater than 2 suggesting that at least the first two moments of all series do exist. The
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rolling estimator (Figure 6) applied to similarly merged series displays similar results, however this is a

more volatile series since the window size is held fixed throughout at 300 observations leading to some

small sample bias in the estimator calculation.

Our final visual test involves calculating each of the different tail index estimates across a rolling

sample of the data. This provides us with information on two fronts, at each level it offers us a comparison

across tail index estimation methodologies as well as directing the search for the optimal tail size. As we

might expect, the optimal size at which bias and variance tradeoff is minimized varies according to the

exact non-parametric method employed.  Estimates of the tail index are notoriously sensitive to the size of

the tail. The tradeoff is between limiting oneself to ‘too small’ a tail so that the tail index estimate is highly

sensitive to outliers and allowing too many observations from the central distribution into the tail which

would bias the tail index estimate upward. We also vary the sample size and choose that size at which the

tail estimate appears to plateau out.  The graphical results of such a procedure are shown in the Appendix

figures 3 and 4. In each pair of figures we present the tail index estimate for the Pickand, Dekkers and Hill

estimators respectively and for the developed and emerging markets separately.  In table 1 this information

is tabulated for sample sizes of 100, 200 and 300 observations. Since we need a precise step size between

observations for the non-parameteric measures described above, we limit data from 12th May 1998 onward

as this is when the MSCI price indices begin to show daily variation for all countries in the sample.

For emerging and developed markets, the tail index appears to rise until about 200 observations.

The hill index starts to stabilize in this zone and then declines.  The Dekkers and De Haan estimate tends to

keep rising especially in the positive tail. However for both emerging and developed markets, in the

negative tail, this estimate starts to stabilize by about 300 observations.  The Pickands estimate seems to

stabilize quickly but it’s asymptotic variance is very large further at small values of k it is extremely

volatile.  The volatility of the pickands estimate and its asymptotic results lead us to reject this as the

method of choice in the rest of the paper. The increase in the Dekkers estimate throughout the positive tail

makes it difficult to locate a region of the stability for this estimator. Further since a significant part of the

analysis is devoted to comparisons in the tail index across tails we are in need of a method that will

consistently perform across tails.  This leads us to eliminate Dekkers and De Haan as the tail index for

further investigation. Instead we focus on the hill index which has the added advantage of a great deal of
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attention from the field. As a result there exist various methods to estimate the optimal order size

specifically for hill index estimation. The visual plots below suggest the general area of stability for the hill

index across regions and tails is at a sample size of between 200-250. For the sake of comparison, we

estimate the optimal size from a more traditional econometric technique below.  While it is difficult to find

a consistent consensus across these many estimates regarding sample size, the general stability around

samples of 250 – 300 suggests that this is the appropriate size to consider.

IIA: Weighted Least Squares Method of Optimal Tail Size Selection

One of the major concerns in applying the hill index as the primary metric of tail thickness is the

sensitivity of the index to the number of extreme values or order statistics used in the calculation of the

index.  While it has been shown that the hill index is asymptotically unbiased, it is equally shown to suffer

from deep bias in small estimates. There is a well known bias-variance tradeoff  - including too few

observations reduces the bias but increases the variance of the estimate. On the other hand drawing too

many observations from the central part of the distribution causes extreme bias to enter at the cost of

reduced variance.  One approach offered by Huisman et al (2000) is to calculate the hill index over a range

of different tail sizes, then calculate weights over a range of these standard hill indexes where the weights

are measured from conventional least squares techniques.  This provides an estimate of the hill index, that

is a weighted average over various tail indices.  The theoretical justification for this method is the

following:

The literature presents the bias in the hill index for this class of distributions:

)1(1)( βαα −− +−= bxxxF

The impact of the size of the tail index can be seen in the expected value and variance of the hill index at

any given size of the tail. In both cases, the bias in the hill index increases with higher k while the variance

declines in k. As a result, minimizing bias requires limiting the size of the tail while achieving efficiency

requires increasing k. This can be seen in the following equations:

)(/(/1~))(( βααβαγ +− bkE (Equation 8)

2/1~))(var( αγ kk (Equation 9)
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Given this dilemma Huisman et al offer a method that employs weighted least squares methods to calculate

the tail index over a range of choices of k.  They find that for small k, the bias term can be approximated by

a linear function .  In this case equation 9 can be written as

kkkk ki ....1))(( ,0 =++= εββγ (Equation 10)

This equation offers a way to avoid having to select any one optimal k to determine the estimate of the tail

index. Instead the information set of a full range of conventional tail index estimates is used to calculate the

tail index of the distribution.  In matrix form, this equation can be written εβγ += Z*  where the *γ

vector consists of )(kγ  where k ranges from 1 ….K – the range of tail index sizes within which the

relationship between the tail index and the number of order statistics is approximately linear. Due to

heteroscedasticity in the error term above, the authors propose to use weighted least squares methods where

the weights are constructed from the matrix of order statistic sizes. This involves adding a matrix (K * K)

matrix with diagonal elements [ ].....,3,2,1 k  and zeros elsewhere. Solving for the WLS estimate

of β  results in:

*1 '')''( WyWZWZWZbwls
−=  - as a result the modified hill estimator is a weighted average of the

standard estimators for k=1….k

∑
=

=
k

i

kkwk
1

)()()( γγ  (Equation 11)

where weights are formed from the wls coefficient estimates.

Table 1:Emerging Markets – Weighted Least Squares tail index

Country Positive Negative

Argentina 2.44 3.14

Brazil 5.44 4.69

Chile 5.37 3.88

Indonesia 2.86 2.84

Phillipines 3.85 2.81

Korea 4.37 7.80

Taiwan 7.91 5.14

Thailand 3.61 5.59
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Table 2:Developed Markets – Weighted Least Squares Tail Index

Country Positive Negative

Australia 4.65 4.05

Austria 6.34 4.66

Belgium 3.89 5.33

Canada 5.14 3.60

Germany 4.79 5.49

HongKong 3.82 3.70

Ireland 6.31 3.74

Italy 5.31 5.42

Japan 4.44 6.39

Singapore 4.37 2.84

UK 5.31 4.73

USA 4.19 5.25

Since the aim is to compare tail index estimates, it is important to have a choice of order statistics

that is consistent across markets.  Du Mouchel’s rule of denoting the tail as 10% of the ordered sample is

used as a rule of thumb in the literature. The results from the WLS method can be compared to the tail

index results calculated from 10% of the tail index size in tables 1 and 2 in the Appendix.  We find that the

weighted least squares tail index is highly sensitive to the initial size of the tail. This presents a real

dilemma to the reliability of this methodology. Further based on the visual plots, we see the estimate

calculated here is typically toward the highest end of the rolling sample. This suggests that a large number

of center observations are dominating the weighted least square calculation.  In some sense this provides us

with an upper bound of the tail index estimate. However based on the visual and tabulated results – and the

standard use in the literature of DuMouchel’s 10% threshold rule, we choose to use this rule on the full

sample and use the hill index to estimate the tail index in the bootstrapping and monte-carlo analyses in the

following sections. Since our purpose here is to compare the size of the tail index for distributions within a

limiting distribution we are able to rely on the broad area of stability in the hill index to calculate and

consistently compare the tail behavior across different markets and regions.
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III. Asymmetry Across Tails

Tail index estimates range widely across markets.  Emerging markets like Argentina, Philippines and

Chile have negative tail hill estimates less than 2 (at a constant tail size of 200), while developed markets

typically have indexes above 2. Within the same developed region, country estimates of the negative tail

index (at tail size of 200 order statistics) vary from 1.77 to 2.58.  Given this range the statistical

significance of differences in tail estimates must be measured carefully.  Related studies typically make

distributional assumptions to estimate the tail index and to construct tests of tail index equality. However

the range of estimates point to the difficulty of making any universal distributional claims. Therefore we

aim to remain agnostic about the implications of the tail index for the underlying distribution and the

existence of moments. Although we use a Monte Carlo approach based on the hill index estimate, we also

construct a bootstrapping test to identify statistical asymmetry in a way that is free of any distributional

assumptions in its construction.

The only work similar to this in nature is by Jondeau and Rockinger (2003).  For a set of emerging and

developed nations encompassing those studied here, they find almost no significant difference in the tail

index either between tails or across markets.  Their results relied on the direct estimation of the scale,

location and shape parameters of the extreme value distribution. These are estimated by fitting a maximum

likelihood function to often sparse extreme observations. They construct likelihood ratio tests to estimate

the significance of parameter differences. Jansen and De Vries (1991) exploit the asymptotic normality of

the hill index to create comparative test measures distributed 2χ , that are similar to the standard wald

statistic. However both of these approaches require a parametrized distribution under the null. This is

unfortunate since the exact distribution generating returns continues to be unknown. For this reason we

attempt to remain as agnostic as possible.  We test our conclusions from any Monte Carlo approach with

bootstrapping methods to allow the empirical distribution to speak for itself.

The Monte Carlo approach is based on mapping the tail index to the degrees of freedom of a

frechet distribution.  Here a word of caution is appropriate - as the tail index can inform us about the

existence of moments, it is tempting to use these estimates to draw distributional conclusions. A casual

view of hill estimates in the Appendix Table 1 suggests that some moments of the underlying distribution
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may not exist.  However substantial evidence shows that such inferences may not be reliable. Longin

(1996) concluded that third and higher moments could be infinite for a century of daily returns on an index

of the most traded NYSE stocks. He establishes that while the mean and variance definitely exist, third

moments and higher such as skewness and kurtosis could be infinite.  Similarly (Wagner and March 2000)

show that in small samples, semi to non parametric estimation of the stable return models can fail in small

samples. As a result they conclude that while all tail index estimation techniques can be used given the a

priori assumption of a Frechet limiting distribution, they cannot be used to infer the underlying distribution

from the calculated estimate.  Therefore we do not comment here on the existence of moments, and in the

Monte Carlo approach we assume we are in the frechet domain of attraction and map the tail index to the

degrees of freedom of a student-t distribution.

The data comprise of the Morgan Stanley Capitalization International (MSCI) country price

indices from Jan 1st 1993 – May 1st 2003. These indices capture 80% of the market capitalization at each

point in time.  Local currency equity returns are calculated as the log difference in daily price index

observations.  Each return series is demeaned and transformed to unit variance to minimize the effect of

differing variance in the original data. Since daily prices for some markets are unavailable until 4th May

1998, some of the tests below limit the period to May 5th 1998 – May 1st 2003.  We follow our visual test

and Du Mouchel’s rule using a consistent tail size of 150 order statistics. For the reasons discussed in

Section II, we choose to use the hill index and compare tail thicknesses between the positive and negative

tail of each market’s return distribution.

III.1 Asymmetry Across Tail : Monte Carlo Evidence

Monte carlo methods are used to simulate data from a given distribution and generate confidence

intervals against which to compare actual empirical estimates. The previous discussion on EVT indicates

that the student-t is an accurate representation of the underlying distribution in cases where the tail index is

in the range of  [0,2). In order to study the asymmetry in the tails of each return distribution, we simulate a

symmetric student-t distribution with degrees of freedom calibrated to each market’s actual positive tail

index.  We rank 10,000 tail index differences and report the 5th and 95th percentile observations. This

calibrates the distribution under the null of tail index symmetry.  We estimate the statistical significance of

the actual tail index difference by comparing it to these confidence intervals.
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Among emerging markets, we reject the null of symmetric tails in the cases of Argentina, Chile,

Philippines, Taiwan and Thailand.  In Table 3 below, the “empirical difference” measures the actual tail

index difference calculated as the positive minus the negative tail index, τpos - τneg =τdiff. Since the tail index

is the negative inverse of the shape parameter, a smaller value indicates a fatter tail. In all statistically

significant cases the difference is negative, suggesting that the negative is fatter than the positive tail and

consequently market busts in these markets are more probable than booms.

Table 3 : Emerging Market Tail Asymmetry

Country 5th Percentile 95th Percentile Empirical Difference

Argentina -0.1476 0.1497 -0.1701

Brazil -0.1801 0.1785 -0.1086

Chile -0.1524 0.1551 -0.2546

Indonesia -0.1698 0.1643 0.0398

Phillipines -0.1461 0.1506 -0.2882

Korea -0.1779 0.1823 0.0390

Taiwan -0.1749 0.1721 -0.2262

Thailand -0.1561 0.1584 -0.1882

For developed markets we reject symmetry in Table 4 only in HongKong and Singapore. The

common region and sharp difference from other nations in this set suggest that these two countries are more

like the emerging markets in their distributional characteristics.

Table 4: Developed Market Tail Asymmetry

Country 5th Percentile 95th Percentile Empirical Difference

Australia -0.1980 0.1891   -0.0713

Austria -0.1813 0.1846 0.1228

Belgium -0.1948 0.1886 0.0033

Canada -0.1923 0.1919 -0.0012

Germany -0.1962 0.1895 -0.0593

Hong Kong -0.1729 0.1716 -0.1869

Ireland -0.1825 0.1797 -0.0750

Italy -0.1759 0.1773 -0.0445

Japan -0.1890 0.1857 -0.1083

Singapore -0.1832 0.1857 -0.1933

UK -0.1846 0.1860 -0.1127

USA -0.1825 0.1831 -0.0701
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III.2 Asymmetry Across Tails : Wild Bootstrap

The distributional assumptions of the Monte Carlo analysis above depend on the exact calculation

of the tail index. However in section II we saw that the hill index is particularly sensitive to the number of

order statistics used to define the tail. A qualitative judgment has to be made about the tail size at which the

hill plot stabilizes. Further the range of tail index estimates within each country and the differing volatility

of the hill plot across markets suggest that the reliability of the mapping between the hill index and the

student-t distribution may vary across markets. Therefore we supplement the Monte Carlo results with a

non-parametric approach that does not make any distributional assumptions based on the hill index and

relies entirely on the empirical distribution.

The wild bootstrap tests for asymmetry by scrambling the actual observations.  A sample of the

data is multiplied by a randomly selected vector  [1,-1] chosen with probability =0.5 to scramble the sign

on the observed data. The data is resampled multiple times to render the process completely random.  The

tail index of the positive and negative tails is then calculated on each of these scrambled series. The tail

index difference over these samples yields an estimate of the distribution of tail index difference under the

null hypothesis of complete symmetry. We calculate the 5th and 95th percentile observations and compare

the empirical tail index difference against these bounds.

  The empirical tail index difference varies here from Table 3 above because we use data here from

May 12th 1998 onward to take advantage of the daily variation in the MSCI price indices across all markets

in the sample. While limiting the study to this latter period does not impact the conclusions of the Monte

Carlo approach presented above (results from author), they become relevant in a study that scrambles the

signs on daily observations.  These results provide an interesting benchmark against which to compare the

monte carlo results and particularly to evaluate the impact of the distributional assumptions above.

Table 5 :Wild Bootstrap in Emerging Markets

Country 5th Percentile 95th Percentile Empirical Difference

Argentina -0.3869 0.4001 -0.1415

Brazil -0.4957 0.4912 -1.1412

Chile -0.4683 0.4718 -0.0860

Indonesia -0.4816 0.4817 -0.2151
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Phillipines -0.4508 0.4479 -0.1742

Korea -0.5668 0.5657 0.0139

Taiwan -0.6622 0.6542 -0.1322

Thailand -0.5133 0.5121 -0.1143

According to this test, we reject the hypothesis of symmetry only in the case of Brazil. However

the asymmetry for Brazil is striking.  Interestingly Rockinger and Jondeau, using maximum likelihood

estimation methods found significant asymmetry only for Brazil.  We find that 8 of the 10 largest negative

moves in the Brazilian market occur in the late 90s. The fact that the Monte Carlo study did not identify

significant asymmetry for Brazil could be because the effect of these observations on the hill index and the

associated student-t distribution was diluted when the full period was taken into account.  We find similar

cases among developed markets below.

Table 6: Wild Bootstrap in Developed Markets

5th Percentile 95th Percentile Empirical Difference

Australia -0.8185 0.8337   -0.3422

Austria -0.5707 0.5727 0.1038

Belgium -0.5287 0.5305 -0.5931

Canada -0.5111 0.5019 -0.5642

Germany -0.5558 0.5467 -0.2426

Hong Kong -0.6154 0.5980 -0.2203

Ireland -0.4910 0.4974 -0.5233

Italy -0.9942 1.0134 -0.6091

Japan -0.7430 0.7474 -0.3219

Singapore -0.5960 0.5866 -0.1236

UK -0.6045 0.5917 -0.1512

USA -0.5936 0.6014 -0.4500

This simple bootstrap technique tells an interesting story for developed markets. While the Monte

Carlo approach above identified two of the most emerging-like countries in the developed region, in Table

6 above we find significant asymmetry for Belgium, Canada and Ireland.   All of these countries had their

minimum return in this latter period.  This method may be identifying slight deviations from asymmetry

while the Monte Carlo technique will only identify asymmetry when it affects the overall tail index
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calculation and the degrees of freedom on the student-t distribution. This may explain some of the

differences between the results of the two methodologies.  However despite such a severe test, we are able

to identify asymmetry in a few major developed markets.

We find evidence of significant asymmetry between markets in both the emerging and developed

region. While the Monte Carlo and bootstrapping approaches reveal evidence of asymmetry in different

countries, this could be due to the sensitivity of each approach to extreme observations.  The prevalence of

asymmetry in the emerging markets relative to the developed countries however suggests that there may be

substantial differences in regional tail index estimates. We now turn to systematically estimate these

differences and characterize each region’s tail behavior.

IV. Regional Differences In Tail Behavior

There is substantial evidence of differing volatilities and levels of efficiency between developed

and emerging equity markets. It is plausible that tail indices might be statistically different between the

emerging and developed region.  Due to the large number of combinations, it is difficult to follow the

previous Monte Carlo approach between pairs of markets. Instead we construct bootstrapping tests to

estimate the significance of the difference in tail behavior between regions.  Bootstrapping methods make

no distributional assumptions and are based on repeated sampling from the empirical data.  If we can

assume that markets in the same region have similar data generating processes, we are able to pool the data

and preserve their distributional characteristics.  We can then compare a series of “regional returns” with an

individual market’s returns and estimate the significance of the tail index difference between these series.

In the following sections we estimate the difference in tail behavior between markets and their own region

and between each market and the alternative region (ie. Chile vs. the developed region). We show evidence

of sufficiently similar tail behavior to justify pooling individual countries into regional returns. Based on

this, we are able to show that emerging markets have consistently fatter tails than the developed region.

In each of the tests below we bootstrap the original length of the data series from the individual

country and respective pool.  We calculate the negative tail index and the empirical tail index difference

τdiff  (τmarket - τpool =τdiff) for each sample .  This provides the distribution of the null of a common tail index

between the region and the market. We report the 5th and 95th percentile of this distribution. We then
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calculate the empirical negative tail index difference between the market and region. By comparing this test

statistic against the percentile bounds of the null distribution we can estimate the statistical significance of

the actual difference. Following DuMouchel (1984) rule discussed in Section II, we use 10% of the

region’s data to calculate the hill index for each region.  Once again it is important to note that we are not

suggesting that all developed market countries have precisely the same data generating process. However

given anecdotal evidence of the regional nature of market crashes and booms, we are led to believe that tail

behavior is persistent and preserved under pooling.  We choose non-parametric methods in this section so

as not to rely on any distributional assumptions that may or may not hold under addition.  Our assumption

is further supported by the next results on the significance of differences in negative tail behavior between

most markets and their associated region.

IV.1. Do Markets in the same region have similar tail behavior?

We first test the assumption of pooling country returns within a similar region.  We ask whether

individual markets are different from their own pool by comparing each market’s negative tail index to that

of its own region’s pooled return.  Consistent rejections of this test would suggest that in pooling the data

we are incorrectly combining fundamentally variant data generating processes. However we find that this is

not regularly the case. As the results show below, there are only two emerging markets and no developed

countries in which the individual market has a statistically different tail index from its region. This supports

our methodology and lends confidence to our results of significant differences between emerging and

developed markets in their distributional tail behavior.

Table 9: Emerging Markets Vs. Own Pool

Country 5th Percentile 95th Percentile Empirical Difference

Argentina -0.4584 0.2959 0.0005

Brazil -0.5890 0.1172 0.0779

Chile -0.5920 0.1131 0.1043

Indonesia -0.3065 0.4364 -0.0142

Phillipines -0.5224 0.1677 0.0469

Korea 0.3191 1.1652 -0.1751

Taiwan 0.0726 1.0385 -0.1442

Thailand -0.1845 0.6496 -0.0580
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In Table 9 we compare the negative tail index difference between each market and the emerging

region against the null distribution of a common tail index parameter. Each market is part of its own

regional pool. We bootstrap repeatedly from this pool and calculate the negative tail index of each sample.

The difference between the bootstrapped sample and the market’s own negative tail index constructs the

null distribution of the same tail behavior between the market and region.  The 5th and 95th percentiles of

this distribution are reported.  As we see, the difference in the negative tail index between the market and

the emerging pool (“empirical difference”) is statistically significant only for Korea and Taiwan. In both

cases the pool has a fatter tail than these individual markets therefore in the rest of the analysis we keep

these countries as part of the  pooled emerging return. Since the region has a fatter tail than each individual

market we are not biasing the negative tail index by keeping these in the sample. On the other hand

maintaining the same sample helps compare results across tests in this study.  In a similarly constructed test

for developed markets, Table 10 shows no evidence of individual markets with different tail behavior than

the developed market pool

Table 10: Developed Markets Vs. Own Pool

Country 5th Percentile 95th Percentile Empirical Difference

Australia -0.6705 0.2255   0.0480

Austria -0.5582 0.4392 0.0058

Belgium -0.3887 0.5623 -0.0127

Canada -0.2948 0.6180 -0.0218

Germany -0.0833 0.9566 -0.0606

Hong Kong -0.7846 0.0855 -0.0831

Ireland -0.0396 -0.3810 0.6843

Italy -0.6946 0.2695 0.0492

Japan -0.4276 0.6175 -0.0172

Singapore -0.4980 0.4263 0.0044

UK -0.5338 0.3785 0.0234

USA -0.1624 0.8263 -0.0618
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IV.2. Are there regional differences in tail behavior?

 Based on our results above, we accept our prior of tail behavior preserved under pooling.  We

proceed to test whether emerging markets as a region have systematically fatter tails than the developed

market region.  We find persistent patterns of differences in the data generating processes between these

two broad categories of markets.

Table 11 compares the actual difference between the positive tail indices of each emerging market

and the developed regional pool (the “empirical differences”, τmarket - τpool =τdiff ). The bootstrapped

simulations correspond to the null hypothesis of a common tail index between each market and the

alternative pool. 10,000 samples were bootstrapped from the regional data; the negative tail index

difference between each sample and the emerging market’s negative tail index were ranked and the 5th and

95th percentiles are reported.   We find that five out of the eight emerging markets report statistically

different tail indices from the developed market pool.  In all cases the rejection occurs on the right hand

side of the distribution, suggesting that the emerging market tail index is larger than the developed more

than 95% of the time. This indicates slower decay and fatter tails in emerging markets than in the tail of the

developed market pool.

Table 11: Individual Emerging Markets Vs. Developed Pool

Country 5th Percentile 95th Percentile Empirical Difference

Argentina -0.9890 -0.0915 0.1190

Brazil -1.1017 -0.2783 0.1964

Chile -1.1146 -0.2872 0.2228

Indonesia -0.8328 0.0456 0.1043

Phillipines -1.0462 -0.2184 0.1654

Korea -0.2156 0.7669 -0.0566

Taiwan -0.4545 0.6224 -0.0257

Thailand -0.6932 0.2388 0.0605

We then ask the converse question and use a similar methodology to test whether developed

markets are statistically different in tail behavior from the emerging pool.  Table 12 shows seven countries

have tail behavior that is significantly different from the emerging region.  It is especially striking that the

empirical difference between all of these countries and the emerging pool is smaller than the 5th percentile
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of the null distribution. Once again the distribution is constructed by bootstrapping from the developed

region to calculate τmarket - τpool =τdiff  (ie. developed market tail - emerging region pooled tail index).  In

each case, rejections occur on the left hand side of the null distribution suggesting that the emerging tail

index is a larger absolute value.   The emerging pool therefore exhibits slower decay than any of these

individual markets.

Table 12: Individual Developed Markets Vs. Emerging Pool

Country 5th Percentile 95th Percentile Empirical Difference

Australia -0.1542 0.6121   -0.0704

Austria -0.0416 0.8198 -0.1127

Belgium 0.1040 0.9635 -0.1311

Canada 0.2139 1.0257 -0.1413

Germany 0.4214 1.3642 -0.1791

Hong Kong -0.2677 0.4775 -0.0354

Ireland 0.1173 1.0882 -0.1580

Italy -0.1962 0.6695 -0.0693

Japan 0.0936 1.0143 -0.1357

Singapore 0.0193 0.8304 0.1141

UK -0.0152 0.7814 -0.0951

USA 0.3381 1.2282 -0.1803

The results here are internally consistent and suggest that emerging markets do indeed have

systematically fatter tails than developed markets.  These features in the data are consistent with several

theories including those of weaker efficiency in these markets and the higher probability of herding by

asymmetrically informed foreign investors.

Under this methodology the results are strongly consistent and supportive of systematically fatter tails in

emerging markets either seen individually or as a region.  This finding suggests that risk calculations that

depend on tail behavior must be done with that extreme caution when applying the same threshold rules to
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markets across these regions
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IV:CONCLUSIONS

Extreme value theory offers exciting possibilities to further our understanding of tail events.  While

existing literature has applied EVT to risk management and to improve standard statistical measures of

dispersion – there has been little work done to understand differences in tail behavior between crashes and

booms or between markets in different regions . Many of these applications are sensitive to the particular

market and direction to which they are being applied – as we have seen here statistically significant

differences exist in the tail index both between sides of the distribution and between emerging and

developed markets.  From the perspective of the tail index – each emerging market is sufficiently similar to

its region to allow us to pool return data and create a regional series. This strong universality within the

region might help to explain the geographic nature of market crashes that characterized the Latin American

and Asian crises.  These results provide much direction for further work, possible extensions would be to

account for dependence in the data and test the regional results under some form of persistence.  Finally

this can then be applied to measures of value at risk that take the particular tail index into consideration.

While current studies start to extend VAR in this way, we need to explicitly calibrate the tail behavior of

each market and allow for differing levels of tail thickness between markets. As we have shown here,

markets between regions have variant tail behavior.  In the area of risk management for emerging equities,

an accurate measure and understanding of market specific tail behavior is critical to hedging risk in these

markets.
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Appendix

Figure 1
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Figure 2
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Table 1A-1B. Emerging Market Tail Estimates

Positive
Pickand=

pτ

1
Hill=

Hτ

1
Dekkers & DeHaan= 

Dτ

1

M=100 M=200 M=300 M=100 M=200 M=300 M=100 M=200 M=300

Argentina -0.1900 0.2131 2.4774 1.8741 1.4607 1.2141 2.287 11.38 4.26

Brazil -0.0025 0.2582 3.3469 1.1254 1.2760 1.1660 2.2089 1.8238 2.2435

Chile 0.0330 0.0917 2.6847 1.7015 1.5260 1.3833 2.8776 4.924 7.1983

Indonesia -0.0266 0.3153 2.8278 1.9396 1.5429 1.2879 2.1295 4.4404 5.9077

Phillipines 0.2017 0.0929 2.0360 1.7714 1.5642 1.2460 2.4471 3.973 10.74

Korea -0.3273 0.3475 3.5613 2.4883 1.9235 1.4478 1.768 2.1035 2.8843

Taiwan -0.1241 -0.0885 1.4786 2.3807 1.7267 1.3984 1.8022 2.6083 4.6506

Thailand 0.1621 0.0024 2.0159 1.8496 1.6576 1.2487 2.2447 3.0838 8.8625

M=Number of order statistics. The sample of (n) observations is first sorted in ascending order,
observations from 1 to the Mth smallest observation are used in each tail index calculation.

Negative
Pickand=

pτ

1
Hill=

Hτ

1
Dekkers & DeHaan= 

Dτ

1

M=100 M=200 M=300 M=100 M=200 M=300 M=100 M=200 M=300

Argentina 0.1900 0.2131 2.4474 2.0156 1.7002 1.4129 2.0652 2.7863 4.9656

Brazil -0.0025 0.2582 3.3469 2.2656 1.9988 1.7140 1.8486 2.0155 2.2911

Chile 0.0330 0.0917 2.6847 1.7846 1.7205 1.4638 2.4853 2.5885 3.2697

Indonesia -0.0266 0.3153 2.8278 2.1547 1.8059 1.4025 1.8882 2.3209 3.6790

Phillipines 0.2017 0.0929 2.0360 1.9456 1.7082 1.4245 2.1790 2.6426 4.2292

Korea -0.3273 0.3473 3.5613 2.4744 2.0981 1.5271 1.7703 1.9394 2.3822

Taiwan -0.1241 -0.0885 1.4786 2.5129 2.1461 1.6884 1.7671 1.8955 2.0439

Thailand 0.1621 0.0024 2.0159 1.9639 1.7013 1.4483 2.0535 2.9592 3.8013

*M=Number of order statistics. The sample of (n) observations is first sorted in ascending order,
observations from 1 to the Mth smallest observation are used in each tail index calculation.
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Table 2: Developed Markets Tail Index

Negative
Pickand=

pτ

1
Hill=

Hτ

1
Dekkers & DeHaan = 

Dτ

1

M=100 M=200 M=300 M=100 M=200 M=300 M=100 M=200 M=300

Australia -0.3669 0.2354 3.0963 2.3903 2.1942 1.7310 1.7947 1.8630 2.0635

Austria -0.1698 0.5255 3.2816 1.9566 1.7754 1.3857 2/0516 2.4872 5.0162

Belgium -0.2329 0.4065 2.5977 2.7838 2.1444 1.4565 1.7295 1.9065 2.7907

Canada -0.0378 0.1780 3.2194 2.6891 2.0828 1.6402 1.7415 1.9366 2.1068

Germany -0.1568 0.2033 2.8750 2.6919 2.1126 1.6480 1.7370 1.9240 2.1934

HongKong 0.0131 0.0880 2.7544 2.2674 1.8988 1.5279 1.8393 2.1261 2.4759

Ireland 0.0677 0.2066 3.3163 2.5880 2.0080 1.5802 1.7698 2.0470 2.2572

Italy -0.2175 0.2317 2.4174 2.5912 2.1338 1.6256 1.7493 2.9008 2.2566

Japan -0.5650 0.3948 2.2587 2.6939 2.3158 1.5769 1.7362 1.8273 2.5949

Singapore 0.0329 -0.0200 2.3265 2.4565 1.9932 1.6520 1.7294 2.0121 2.3939

UK -0.1858 0.1439 2.6319 2.6511 2.1239 1.6449 1.7548 1.9034 2.2119

US -0.6495 0.4516 2.6796 3.1148 2.5735 1.6294 1.7110 1.7534 2.0083

*M=Number of order statistics. The sample of (n) observations is first sorted in ascending order,
observations from 1 to the Mth smallest observation are used in each tail index calculation.

Positive
Pickand= 

pτ

1
Hill=

Hτ

1
Dekkers & DeHaan= 

Dτ

1

M=100 M=200 M=300 M=100 M=200 M=300 M=100 M=200 M=300

Australia -0.3669 0.2354 3.0963 2.0481 1.9022 1.6276 1.9601 2.1221 2.2740

Austria -0.1698 0.5255 3.2816 2.0604 1.6262 1.3491 1.9602 3.1606 6.1994

Belgium -0.2329 0.4065 2.5977 2.1907 1.6081 1.3584 1.8962 3.7008 5.0741

Canada -0.0378 0.1780 3.2194 2.1248 1.727 1.5123 1.9060 2.5560 2.6259

Germany -0.1568 0.2033 2.8750 2.4493 2.0801 1.5522 1.7813 1.9322 2.5799
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HongKong 0.0131 0.0880 2.7544 2.0471 1.7155 1.4727 2.0316 2.6967 3.1742

Ireland 0.0677 0.2066 3.3163 2.0617 1.7807 1.4856 2.0181 2.4434 3.3206

Italy -0.2175 0.2317 2.4174 1.9821 1.8127 1.4185 2.0207 2.2950 3.8316

Japan -0.5650 0.3948 2.2587 2.3720 1.9836 1.4779 1.8029 2.0258 2.9327

Singapore 0.0329 -0.0200 2.3265 2.3329 1.8731 1.4553 1.8074 2.1770 2.7087

UK -0.1858 0.1439 2.6319 2.8023 2.0045 1.5908 1.7270 2.0023 2.7833

US -0.6495 0.4516 2.6796 2.6648 1.9352 1.5324 1.7482 2.0862 2.6152

*M=Number of order statistics. The sample of (n) observations is first sorted in ascending order,
observations from 1 to the Mth smallest observation are used in each tail index calculation.

Emerging Market Autocorrelation

Argentina Brazil Chile Indonesia Phillipines Korea Taiwan Thailand

0.0600 0.0074 0.1011 0.0525 0.0449 0.0200 0.0099 0.0774

-0.0032 -0.0067 0.0344 0.0112 -0.0170 -0.0207 0.0216 0.0216

-0.0422 -0.0092 0.0189 0.0090 -0.0187 -0.0181 0.0218 -0.0135

-0.0027 -0.0149 0.0268 0.0037 -0.0178 -0.0175 -0.0316 -0.0207

0.0170 -0.0092 0.0520 -0.0043 0.0024 -0.0251 0.0187 0.0052

Developed Markets Autocorrelation Lags 1: 5

Australia Austria Belgium Canada Germany HongKong Ireland Italy

1 -0.0092 0.0245 0.1089 0.0066 -0.001 -0.001 0.069 0.0047

2 -0.0144 -0.0148 -0.0122 -0.0145 -0.0201 -0.0182 -0.0162 0.0018

3 0.0196 0.0123 0.073 0.0096 -0.0208 0.0112 0.0091 -0.0235

4 -0.0219 0.0447 -0.0101 -0.0419 0.0257 -0.0035 0.0187 0.0304

5 -0.0121 -0.0162 -0.0455 -0.0196 -0.0175 -0.023 -0.0111 -0.0265

Japan Singapore UK USA

1 0.0062 0.0482 -0.0003 -0.013

2 -0.0085 -0.0026 -0.0515 -0.0142

3 -0.0138 0.0091 -0.0731 -0.0264

4 -0.0156 0.0116 -0.0266 -0.0115

5 -0.0197 -0.0002 -0.0331 -0.0147
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Figure 3
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Figure 4
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Figure 5 – Average Recursive Tail Index Across Emerging Countries
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Figure 6 – Average Rolling Tail Index Across Emerging Countries
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