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ABSTRACT

This paper tests whether fitted linear models can replicate results from moment tests inspired by moving
average technical trading rules for weekly foreign exchange series. Estimation is performed using standard
OLS and maximum likelihood methods, along with a simulated method of moments technique which
incorporates the trading rule moments into the estimation procedure. Results show that linear models are
capable of replicating the trading rule moments aong with the small autocorrelations observed in these
series. This result holds for parameter values estimated using SMM and GARCH disturbances, but not
for parameters estimated using maximum likelihood. The estimated models are ssmulated to examine the

amount of predictability over long horizons.
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|. Introduction

When work on nonlinearitiesin financial time series began it was seen by many technical traders as
justification for their work. They saw aclear connection between technical trading rules and nonlinearities.’
For some rules this connection is indisputable. Rules that ook for general patterns such as “head and
shoulders’ and other more complicated figures are clearly attempting to find some kind of nonlinearity in
these series. For other rulesthislink isnot so obvious, and it is not clear whether rules that are simple trend
followers, such as the moving average or oscillator rules, are connected to nonlinearities. This paper will
test the strength of some of these linkages.

Severa recent papers have presented conflicting evidence for the presence of nonlinearities.
Hsieh(1989) finds most of the evidence for nonlinearities for daily exchange rates to be coming from
changing conditional variances. Diebold and Nason(1990), and M eese and Rose(1990) found few improve-
mentsin out of sampleforecasts using nonparametric techniques. However, Kim(1989), and LeBaron(1992),
show small out of sample forecast improvements using models which combine forecasts of the conditiona
mean with information contained in conditional variances.

Results using technical trading rules have been more consistent. Dooley and Shafer(1983) presented
some of the earliest evidence suggesting that technical trading rulesmight be detecting changesin conditional
mean returnsin foreign exchangerate series. Sweeney(1986) al so finds results supportiveof the profitability
of similar rules. Also, studiesby Schulmeister(1987), Curcio and Goodhart(1992), and Taylor(1992a,b) find
similar evidence for even more extensive sets of rules and data series.> Recent papers by LeBaron(1991),
and Levich and Thomas(1991) have followed the paper by Brock et a.(1992) on stock returns by using
bootstrap simulationsto demonstrate the statistical significance of the moving average technical trading rule
results against certain alternatives.

The results of these two lines of research, nonlinear forecasting, and moving average technical trading
rules, are interesting, but are they detecting the same characteristics in these series? The moving average
types of trading rules appear well designed to pick out long range persistent trends rather than the more
complicated dynamics generated by certain nonlinear models. Antoniewicz(1992) contains some of thefirst
power tests done on moving average rules. She found that the rules had little power against some simple

nonlinear models. This suggeststhat the profitability of trend following trading rules may be more closely

L' For a recent example of this see, “Technical Analysis: Tilting at Chaos”, in The Economist (August 15, 1992).

2 Taylor and Allen(1992) report on survey results which find that 64 percent of dealers surveyed used moving
averages, or some other trend following system, as a part of their forecasting system.
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related to model s with persistent trends such as those used in Engel and Hamilton(1990) and Taylor(1980),
or long range forecasts such those in Mark(1992) 2

Thispaper approachesthis problem by searching the space of traditional linear models. New estimation
techniques are used which incorporate the technica trading rules in the estimation procedure. Parameters
are estimated using simulated method of moments to match both trading rule results, and low order autocor-
relations. These models are then simulated and compared with the original series. The objectiveisto see
if there do exist linear models which can match the trading rule predictability while at the same time being
relatively uncorrelated. Theresultsindicatethat the new estimation procedures change the estimated values
for some of the parameters, and that simulations using these parameters show a good match between the
simulated linear models and the actual series on both these dimensions. Tests are aso performed on linear
models with GARCH disturbances, and these do a good job of matching the original series. In al casesthe
parameters of the estimated models are often close to being nonstationary. Thisis consistent with some of
the evidence for persistence of returns to forward speculation presented in Evans and L ewis(1992a).

These results should not be taken as indicating that foreign exchange series are necessarily linear.
Earlier papers have documented both changes in conditional variances, and some amount of nonlinear
forecastability. What this paper does suggest is that the connections between moving average trading rules
and nonlinearities may be somewhat weak in foreign exchange series. The fact that linear models do a
good jab of replicating the trading rules also strengthens the case for models containing slowly changing
risk premiums either do to consumption risk, or learning about policy changes.* Models with different
trader types such as Brock(1992), Frankel and Froot(1990), Goodhart(1988), and Tsibouris(1992), are aso
consistent with these results when they generate the necessary persistencein the observed series.

Some of the contributions of this paper are methodological. Using the technical trading rules as part
of a simulated method of moments estimation procedure is a new approach. In future work this estimation
strategy will be extended to theoretical models of exchange rate behavior.” These results also ask important
questions about estimation and the parametric bootstrap.® When a model specification is rejected using a

set of estimated parameters how confident can we be in rejecting that entire class of models? This question

3 In a recent paper Neftci(1991) proves that trading rules only give useful information beyond that from linear
forecasting models when nonlinearities are present. However, this assumes that the true parameters for the linear
model are known.

4 See Lewis(1989), and Evans and Lewis(1992b) for models where agents are learning about policy changes.

Canova and Marrinan(1990) is an early application of simulated method of moments for structural exchange
rate model estimation.

6 Tsay(1992) gives a good description of the parametric bootstrap approach.



isintimately related to what time series characteristics we are interested in replicating. Unfortunately, the
bootstrap does not give alot of information about how well models simulated at other parameter values do
in replicating certain features of interest. Resultsin this paper find that this may be a question that needs to
be considered more seriously when using parametric bootstrap style specification tests.

Finally, the forecastability of the fitted modelsis estimated using along simulated time series. Several
interesting results emerge when thisanalysisis performed. First, the amount of forecastabililty, in terms of
Sharperatios, isvery sensitiveto the ARMA parameters. Second, the moving average trading rules perform
very well in comparison to traditional time series forecasts. This is very surprising since the traditional
mode!s are given the true parameter values to make their forecasts.”

Section |1 provides a description the technical trading rules used, the SMM estimation procedure, and
the linear models that will befit. Section 111 presents the empirical results. Section IV looks at simulations
of the actual fitted models to test the amount of predictability of different models, and compares moving
average prediction methods with more traditional time seriesforecasts. Section V presents conclusions and

suggestionsfor future research.
I1. Technical Trading Rulesand Exchange Rate Models
A. Moving Average Rules

This section outlines the technical rules used in this paper which are closely related to those used by
actual traders. All therules are of the moving average or oscillator type. Signalsare generated based on the

relative levels of the price series and a moving average of past prices,

L—-1
my = (1/L) Zpt_i.

One possible trading rule based on the moving average generates a buy signal when the current price level
is above the moving average and a sell signal when it is below.®
Some of the estimation procedures used here will be based on moving average trading rules. Define

thereturn at time¢ as

ry = log(pt) - lOg(Pt—1)-

These results are similar to some results reported in Taylor(1992a,b) where the trading rules perform well in
relation to rules based on traditional time series forecasts.

8 There are many variations of this simple rule in use. One is to replace the price series with another moving
average. A second modification is to only generate signals when the price differs from the moving average by a certain
percentage. Many other modifications are discussed in Schulmeister(1987), Sweeney(1986), and Taylor(1992a).



Now define atrading rule moment as,

Pi—1
2.1
BAS (), (21)
where S(z) = 1if 2 > 1and S(z) = —1if 2 < 1. Thisis close to the return for an investor taking

the appropriate long and short positionsin the two currencies. This still ignores interest differentials and
transactions costs and cannot be viewed as atruetest of the usefulness of thistrading rule. This paper uses
this moment as a useful feature for estimation purposes.

Results from the original foreign exchange series are compared with those from simulated null models
for foreign exchange movements using these trading rule moments. Also, more standard aspects of thetime
series will be used such as autocorrelations. These tests can be extended to higher order moments such as
variance, skewness, and kurtosis. Tests of these moments will not be done here, but they are reported in
LeBaron(1991).

B. Null Modelsfor Foreign Exchange

The trading rule specification presents a very specific challenge for various candidate models for the
movements in foreign exchange series. However, the usefulness of results from these tests also depends
on the choice of null models for simulation and comparison. Since the important point of this paper
is to test linear specifications, only linear models will be used. Also, higher moments will be ignored,
focusing attention on modeling conditional means. Thisis done becauseresultsin LeBaron(1991) show that
conditional variances in foreign exchange series do not depend on moving average trading rules. In other
words, the variance is the same during buy and sell periods.'®

Most of the series studied here show some amount of autocorrelation, so short range autoregressive
models(AR) of the form,

rr=a+biri_q + bari_o + €,

will be used. These models test whether the small amount of autocorrelation seen in the series along with
the trading ruletests can be modeled using asimple short range AR. Later sections of the paper will include

some longer range AR's.

9 See LeBaron(1991) for some tests accounting for transactions costs.

10" This differs from results on stock returns in Brock et al.(1991). Also, this does not say that conditional variances
are constant, but that they do not depend on the trading rule buy or sell signals. Papers by Hsieh(1988) and Baillie
and Bollerslev(1988) present evidence showing that conditional variances are changing. Finally, the conditional
variances may depend on the price-moving average ratios in a more complicated fashion than through the coarse
buy-sell signal.



A more interesting process for the foreign exchange series includes a stochastic trend. Models of this
form have been suggested by many authorsincluding Taylor(1986,1992a) and Hodrick and Srivastava(1987).

If thetrend at time, y, follows,

Mi = pli—1 + e, (2.2)

and thereturn at timet is,

T :,ut—l—et, (23)

then the returns process r; follows an ARMA(1,1) process. Let 0727 be the variance of theiid. process 7,

and o2 be the variance of iid. processfor ¢;. The ARMA process for the returns series will be,

2
o
Ty = pri_1 — p(g2 -I-E 0_2)(1/2)675_1 + ey, (2.4)
€ n

where the variance of the new independent disturbance e; is o + 0727. This puts certain constraints on
the parameters of the estimated ARMA model. First, the signs of the MA and AR components should be
reversed. Second, the MA term must be smaller than the AR term (in absolute value). The size of this

reduction is determined by the ratio of the variances of 7; and ¢;
C. Simulated M ethod of Moments Estimators

Estimation of the linear models will be done using standard OL S and maximum likelihood procedures
augmented by a technique which explicitly takes the trading rule moments into consideration. Simulated
method of momentswill be used to estimate parameters for stochastic processesthat match both autocorrel a-
tionsand the trading ruleresults. Thistechniquewas devel oped for cross sectional databy McFadden(1989)
and Pakes and Pollard(1989). It is extended to time series cases in Duffie and Singleton(1989) and Ingram
and Lee(1991). This section will briefly outline the necessary assumptions and the techniques used in this
paper. It looks at the conditions set forth in Duffie and Singleton(1989) in the context of the problems
addressed here.

The SMM technology isamethod for estimating the parameters for atransitionfunction for a stochastic
processY; in RY,

th—l—l = H(Y;fv €141, ﬁ0)7

where 3, isthe parameter vector, and ;. isavectori.i.d. sequence. Estimation of 3, uses moments defined
by thevector function £ = f(Z:, Bo), E{f},where Z; = [Y;,Yi_1,...,Yi_1],and f : RN!'x© — RM,

Sometimes these moments are known analytically in which case this estimation procedure is standard GMM.



11 However, in many cases analytic moment conditionsare not available. The simulated method of moments
procedure assumes that the econometrician has access to a sequence of random variablesé¢; whichisiid. and

independent of ¢; from which to construct simulated seriesfor 5 € O,
Yti1 = H(Ytﬁv €ir1, B).

The simulated moments are now constructed as time averages from ff = f (Z,f3 ,3) where Zf =

2 ve,, ..., Y2, ). Forany 3 let,

1 T . 1 nT 5
GT<ﬂ>=T;ft—ﬁ;fs,

wheren defines how long the simulation length will berelativeto the samplelength T'. Thiscan beagenera
increasing function of 7" as long as some limiting properties hold.!?

The estimation procedure searches 5 € © to get the vector G'7(3) “close” to zero in some metric.
Formally, the SMM estimator, b, isdefined as,

br = argminGr(8) WrGr(p),
Geoe

where W is aconsistent sample estimate of

=00

Wo= ()"t = [ Y. B~ BUDI, — B

j=—oo

The SMM procedures requires severa assumptions for consistency and asymptotic normality. These
assumptions are:

1. ||fP]]2+s is bounded for some & > 0. f must be continuously differentiable and £ f7(Z¢, 3) isa

continuous function of 3.1 This required smoothness on the moment conditions will easily hold for

the standard moment conditions, but will require some modifications to the trading rule moments used

here.

LN good example of this would be Euler equations restrictions used in finance. These theoretical models, under
certain parametric forms, give very specific analytic moment conditions to be met by the series and the true parameter
values.

12 As T — oo the ratio of simulations to sample should go to some constant. This obviously holds for nT’
simulation lengths.

13
llzlly = [El|=]| "/



2. The process Yf is ergodic for adl 5 € © and the state process Y; is geometricaly ergodic. This
condition requires convergence of the process to the unconditional probability measure to occur at a
certain rate. For all of the linear processes and parameters used in this paper this can be easily verified
using methods outlined in Duffie and Singleton(1989).

3. Wr — W, amost surely.

4. LetC(B) = Guo(B) WoG oo (B). C(Bo) < C(B) foral g € O.

5. By and by areintheinterior of ©.

To get the asymptoatic distribution for the parameter estimates the following conditions are necessary.
6. Dy = E(0f°/973) exists, isfinite, and has full rank.

Since the simulations are used to estimate D suitable smoothnessis needed there too. In other words:
7. Dﬁff satisfies a Lipschitz condition given in Duffie and Singleton(1989) for all § € ©. Also,
E(|DsfE]) < oo, and E(DgfL) isacontinuousfunction of 3.

Under these assumptions,
VT (br — Bo) 5 N (0, (1+ (1/n))(Di{WoDyo)) T — oc.

Linear processes are fit to the data using a set of moment conditions that includes modified versions of

the conditions given in section 2A. Equation (2.1) gave a trading rule moment condition,

E{S(2=l )

mag_1

where S(z) = 1ifz > 1and S(z) = —1if 2 < 1. Thiscannot be used for simulated method of moments
sincethefirst derivativeswill not necessarily be continuousin the parameters of the processr,. The condition
must be replaced with a smooth substitute. The hyperbolic tangent does agood job of accomplishing this.!*

Replace the above condition with

E{tanh((1/m) (-2~ 1))r).

mag_1

This condition can now be added to a more standard set of moment conditions.'®

14
- z
tanh(z) = e te
e % 4 e”

15 The parameter p will be set to constant according to the variability of the price-moving average ratio.



When using any method of moments estimator, choosing the moment conditionsto useis not aways a
trivial procedure. Here, the choice of moments will follow the goal of trying to see whether alinear model
doesagood job of replicating some properties of the data (autocorrel ations) aswell asthetrading ruleresults,
and to see how taking the trading rules into account affects the parameter estimates. The actual datawill be
aligned to simulated data using the mean, variance, the first five lagged autocovariances, and three trading
rule moments. This givesatotal of ten moment conditions. For the trading rule moment condition the 20,
30, and 50 week moving averages are used.

There are two final details left for estimation. The variance covariance matrix is estimated using the
Newey-West(1987) weighting using 15 lags. The procedure in Newey-West(1992) was used to determine
the optimal lag length. 1t recommended lag lengthsintherange of 10-20. Noimportant changes are observed
in estimated parameters or standard errors when thelag length is extended past 15. Thisisimportant for this
case since the moving average may generate very long range dependencein the estimated moments. Lastly,

the number of simulationsis set to 50 times the sample size, n = 50.
[11. Empirical Results
A. Data Summary

The data used in this paper are al from the EHRA macro data tape from the Federal Reserve Bank.
Weekly exchange rates for the British Pound (BP), German Mark (DM), and Japanese Yen (JY) are sampled
every Wednesday from January 1974 through July 1992 at noon New York time. |If Wednesday is a holiday
Thursday is used instead.

Returnsare created using log first differences of theseweekly exchange ratesquotedin dollars/fx. Table
1 presents some summary statisticsfor these return series. All three series show little evidence of skewness
and are dlightly leptokurtic. These propertiesare common for many high frequency asset returns series. The
first 10 autocorrelations are given in the rows labeled, p,,. The Bartlett asymptotic standard error for these
seriesis 0.032. The BP showslittle evidence of any autocorrelation except for lags 4 and 8, while the DM
shows some weak evidence of autocorrelation, and the JY shows strong evidence for some autocorrelation
at shorter horizons. The Ljung-Box-Pierce statistics are shown in the last row. These are calculated for 10
lags and are distributed 2 (10) under the null of iid. The p-values are given in parenthesis. Only the JY
series gives a strong rejection of the null hypothesis.

Thesethree series are adjusted for the interest rate differential using weekly eurorates. Theratesare the
one week bid prices from the London Financial Times. The interest rate series extends from January 1979
through November 25th, 1991. The adjusted series is then defined using,

re = log(pt) — log(pi—1) — (iv—1 — 1{_1)- (3.1)

8



Assuming the continuously compounded form of covered parity thisisthe return to forward speculation,

ry = lOy(Pt) - lOg(ft—1)7

where f;_; isaone week forward rate. Under risk neutrality the returnsto this zero cost investment should
follow a martingale. However, it iswell known that this series is forecastable using past data, suggesting
either atime varying risk premium, or market inefficiencies. '

Table 2 presents summary statistics for these series. The series show similar resultsto table 1. They
all show some amount of leptokursosis and some weak autocorrelations. The autocorrelation patterns are
stronger for the DM and JY series. These results are very close to those from table 1. These series will be
referred to as, BPIA, DMIA, and JYIA.

B. Trading Rule Summaries

This section compares resultsfor the moving average technical trading rules on the original serieswith
some simple stochastic processes. Some of the basic properties of the rules are examined aong with the
important puzzles these present for empirical work.

Figure 1 shows the British pound exchange rate in dollars/pound for the entire sample along with a 30
day moving average. Thebasic trading ruletest would define all periodswherethe priceis abovethe moving
average as buy periods, and where the priceis below the moving average as sell periods. The figure appears
to show long run persistent trends which are captured by the moving average trading rules generating buy
signal s during persistent upswings and sell signals during persistent downswings.

One of the questions that figure 1 asks is whether these apparent trends and the deviations from the
moving averages are redl, or statistical artifacts. Thisisanswered in table 3. Thistablelooks at thetrading

rule moments defined as,
E(St—17‘t)7

where S; is1 if the price at timet is above a moving average of past prices, and —1 if it isbelow. Thetime

averages are estimated from the observed series,

T
(/7)) (Secars). (3.2)
=1

These averages are then compared with the distribution of the same statistic generated by a simulated
random walk for each series. The random walk is generated by scrambling the actual returns seriesfor each

exchange rate, and rebuilding a price series from these scrambled returns. Table 3 presents the fraction of

16 See Hodrick(1987) for a summary of this evidence.



1000 simulated random walks with a trading rule moment greater than that from the original series. Results
are given for 3 different moving averages, the 20, 30, and 50 week. Finally, an average over the three rules

isalso given. Thiswould correspond to,

~

1/T Z 1/3 S?OI‘I_S 1—|—S75591)T‘t

t=1
It presents a summary over the three tests. This value is a'so compared to the appropriate bootstrapped
distributionswhich correctly accounts for the dependence across the individual tests.

Theresultsin table 3 dramatically reject the random walk for al three exchange rates with and without
interest differential adjustment. The largest fraction (or simulated p-value) given is less than 3 percent for
the 20 week moving average on the BPIA series, indicating that very few of the simulated random walks
generated values close to those from the original series. Other p-values are very small with many of these
well below 1 percent. Thisdemonstratesthat the moving average momentsare clearly detecting some pattern
in these serieswhich is statistically significant.

One potential problem here isthat of data snooping and the choice of the moving average test. After
observing a series it will aways be possibleto find some kind of trading “rule” which will find afeaturein
the series which cannot be replicated. This problem is difficult to eliminate entirely, but some tests can be
run to measure itsimpact. Figure 2 shows the sensitivity of the trading rule moment defined in (3.2) to the
choice of the moving average length. It showsthat the actual moving averages used in the simulationswere
not chosen to maximize the in sample trading rule profits.'” Thefigure actually shows that two of therules,
the 50 and 20 week moving averages, may be two of the worst rules to use from the standpoint of trading
profits. The trading rules used here are based on those used by actua traders, but they are much simpler.
Data snooping isan important reason for thissimplification. Adding further complexity to the ruleswill add
more parameters that need to be optimized in some way, increasing the chances for discovering spurious
results. Even though these simple rules may not be optimal from atrading point of view, they are better for
the statistical studies performed here.

Table 3 showed that the trading rules clearly rejected a random walk for al the series. Thisleaves us
with the question of what type of process is capable of generating these results. All of the series showed
some weak autocorrelationsin tables 1 and 2. Could this be enough to generate the results from table 3?

Table 4 approaches this question and strengthens the puzzle put forth by the trading rules.

17 The MA lengths were chosen to follow common trader practice. Technical traders may often follow several
different MA’s. The 30 week (150 day) moving average is very common. The other rules were included as two nearby
rules of longer and shorter duration.

10



Thistable compares the trading rule results for the DM series with those from a simulated AR(1),
Ty = Pri—1 + €.

This table presents results for both the trading rule moments and the first three autocorrel ations along with
the Ljung-Box-Pierce statistic for 10 lags. Means from the series and the simulations are given along with
thefraction of simulationslarger than the original series. The AR(1)’s are simulated using anormal random
number generator.!® When the parameter is zero, results similar to table 3 are observed. The random walk
isunableto replicate the trading rule results. The simulated autocorrelationsare aso alittlelow with aLBP
simulated p-value of (0.119). Asthe AR parameter is increased the simulated trading rule profits begin to
increase. However, this increase appears to be quite slow. The simulations do not match the actual series
for the trading rule tests until the parameter value is increased to 0.3. At thislevel the autocorrelationsin
the simulated series are clearly much larger than those from the original series. The simulated p-value for
the LBP statisticis (0.999) for an AR parameter of 0.3 indicating that the autocorrelation properties of the
simulated series are far from those of the DM series.

It isnow clear that linear processes can show large trading rule profits using the moving average rules.
A simple AR(1) is quite capable of doing this. However, the resultsin table 4 show the difficulty of using
thismodel. It appearsto be hard to find an AR(1) that can match both the autocorrel ationsin the series, along
with thetrading rule profits. Thisstrong tension makesit look doubtful that linear modelsin general will be
able to pass this test, and that nonlinear specifications may be necessary. This question will be explored in

the following sections.
C. AR(2) Processes

This section presents results for AR(2) models fit to the foreign exchange series. Parameters will be
estimated using the procedures from section 11, and then the processes will be simulated using the bootstrap
procedure of using the scrambled estimated residuals to generate replications of the estimated parametric
model.

Theresultsin table 1 show some weak correlations for the each of the exchange rate series. However,
results in table 4 suggest that a simple autoregressive model will not be able to replicate the trading rule
results without introducing a large amount of correlation into the series. The usefulness of a simple short

autoregressive structure is tested more thoroughly in this section.

18 This is done since these forced processes will, by design, be simulated far from the estimated parameters, and
the estimated residuals will therefore not be appropriate.

11



Autoregressive models are estimated using both simple OLS, and the simulated method of moments
procedure described earlier. The simulated method of moments estimation procedure will match moments
from simulations of the fitted model with those from data. For each estimation procedure 10 moments will
beused. Thefirst and second moments of the series are matched a ong with thefirst five covariances without

mean adjustment,
(L/T)> rremy j=1,2,3,4,5.

t

Finally, threetrading rule momentsare used. Asmentioned earlier, the hyperbolictangent isadded to smooth

the trading rule moment. These take the form

mag_1

(1/T) Y tanh((1/m) (2= — 1)r,,

where ma; isthe price moving average of length, 20, 30, and 50. The scaling parameter 1 isfixed at 0.0005
whichis about (1/100) of the standard deviation of the price moving average ratio. The Newey-West(1987)
variance covariance estimator is used with 15 lags, and the simulation length is set to 50 times the length of
the original series.

Parameter estimatesare givenintable5. Therowsbeginningwith OL Sare standard OL Sestimates, and
those beginningwith SMM are the simulated method of moments estimates. The estimated parameters show
very little changefor the two different estimation techniques. They are generaly very small with only the JY
having valuesthat are significantly different from zero. Thisreflectsthe small amount of autocorrel ation seen
in each of the series. The goodness of fit test for the SMM estimates rej ects the overidentifying restrictions
for the BP series, but not for the other two series.!®

The conditional heteroskedasticity of these series is well known.?° In these simulations this will be
accounted for using a GARCH framework used by the previously mentioned papers and many others. Table
6 presents estimates for afitted GARCH(1,1)-AR(2) model. It shows a strong persistence in the conditional
variance for al the series given by the estimates for 3. Also, the estimated autoregressive parameters
have increased in every case except the second lag for the JY. This change could be due to the better
efficiency of this estimator, or it could be related to some of the results on connections between volatility

and autocorrel ation.?!

19 LeBaron(1991) estimation is done using three autocovariances, and only one trading rule moment. Using
these conditions the AR(2) specification was rejected for the BP and JY series. For this paper precision of the
parameter estimates is the most important criteria, so more moment conditions are used.

20 See Bailie and Bollerslev(1989), Hsieh(1988), or the survey by Bollerslev et al.(1990).

21 Bilson(1989), Kim(1989), and LeBaron(1992), all find a inverse relation between the level of the conditional

variance and the autocorrelations in foreign exchange series.

12



The AR(2) specification will now be simulated using the different parameter estimates to seeif it can
replicate the trading rule results seen in actual series while also staying close to the autocorrelationsin each
series. The results are presented in table 7. The row labeled “original” gives the estimated value of each
statisticfrom the original series. Therowslabeled“OLS’ and “SMM” show thefraction of simulationswith
avaluegreater thantheoriginal seriesfor theOL Sand SMM estimated parametersrespectively. Thecolumns
labeled MAN refer to the trading rule moment condition using amoving average of length nweeks, and AVE
refers to the average of of the three trading rule moments. The columns p; represent the autocorrel ations at
lag i, and LBP isthe Ljung-Box-Pierce stetistic.

The AR(2) model is simulated 1000 times for each exchange rate using scrambled estimated residuals
redrawn with replacement. For each of the three series these simulations do a good job of matching the
autocorrelations, but fail for thetrading ruletests. For example, for the BP, the MA 30 trading rule moment is
0.0017 and only 0.3 percent of the simulationsgiveavaluethislargefor boththe OLSand SMM parameters.
Looking at the AVE column shows no simulated p-values larger than 5 percent. These results do not differ
across the two estimation methods, or the simulated GARCH models. Thisshowsthat for all three exchange
rate series the AR(2) was not able to match the trading rule results for each series either in a homoskedastic
framework, or using the GARCH model.

The AR(2) does much better in matching up with the autocorrelationsin the series. Thisis seen on the
right side of table 7. For al the series the autocorrelations from the simulations do a good job of matching
thosein the actual series. Most of the estimated autocorrel ationsare within the central parts of the simulated
distributions. This should be expected since an autoregresive model should be able to faithfully replicate

the autocorrel ations seen in the series.??
C. ARMA(1,1) Processes

In this section the ARMA(1,1) described earlier is estimated and simulated. This process was derived
from amodel with atimevaryingdrift followingan AR(1) process. Thisisanimportant test of the possibility
of a slow moving risk premia as an explanation for these results. Table 8 gives the estimated parameters
for the ARMA(1,1) process using the two different estimation techniques, maximum likelihood(ML), and
simulated method of moments (SMM). The parameter estimates are al in the range consistent with the
stochastic drift model, b; > b,. Also, for dl the seriesthe MA and AR parameters are very close. Thisis

due to the fact that they must fit the very low autocorrel ation structure seen for each of the series.

22 Most of the results of the AR(2) seen here have been replicated on the interest rate adjusted series with little
change.
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For all the seriesthe estimated parameters changewhen moving fromML estimationto SMM estimation.
Both the AR and MA parameters increase. Thisincrease is quite dramatic for the unadjusted series. For
example, for the DM series, the estimated AR coefficient increases from 0.53 to 0.96. For the BP the
estimated AR coefficient is close to 1 with a value of 0.98. The change is smaller for the interest rate
adjusted series, BPIA, DMIA, and JYIA. Unlike the AR(2) estimates, the trading rule moments have had a
strong impact on the values of the estimated parameters. In all cases the goodness of fit statisticis not large.
Thelargest isfor the DM with ap-value of 0.297.

The ARMA(1,1) is aso estimated with a GARCH processes for the disturbance term. The parameter
estimates are shown in table 9. The variance persistence parameters, «; and 3 are very close to those
estimated in table 6 for the AR(2) model. This suggests some amount of independence of the estimated
variance process to the type of linear returns process estimated. This is probably due to the fact that in
either case the means processis a small fraction of the variability of the series. The estimated valuesfor the
ARMA parameters are close to those estimated in the homoskedastic case for the interest adjusted series.
However, they increased for the nonadjusted series, BP, DM, and JY.

Theimportant question is again whether the estimated ARMA model isableto capture both thetrading
rule moments along with the weak autocorrelations. Results of thesetestsare givenin table 10. Inthistable
the series are compared with results from 1000 simulations of the ARMA(1,1) generated using scrambled
estimated residuals drawn with replacement. The right hand side of table 10 again shows this mode! fitting
the autocorrelations of the series very well. There are afew exceptions where the ML estimates did not do
agood job matching certain specific correlations, but the overall matchup on the first ten correlations given
by the LBP statistic doeswell. The most unusual p-valueis0.913 for the ARMA-GARCH model for the BP
LBP statistic.

Turning to the trading rule results for the ML parameter estimates a familiar pattern is observed. This
test strongly rejects this model with this set of estimated parameters. For the AVE test the simulated p-
values are 0.004, 0.014, and 0.015 for the BP, DM, and JY respectively. Turning to the SMM and GARCH
simulations a different picture is revealed. For both these cases the p-values indicate that the simulated
processes are doing a good job of replicating the trading rule results from the foreign exchange series. For
example, the p-valuesfor the SMM estimated parameters are 0.803, 0.391, and 0.419 for the BP, DM, and JY
respectively. This model, in these two cases, has done a generally good job of matching the two important

properties being tested here. 2°

23 The LBP tests used here cover only 10 lags. Simulations have been performed at lags up to 50 to see if unusual
correlations get detected. There is no evidence of unusually large correlation in the simulations using the SMM
parameters.
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The second part of table 10 presents results from simulating the interest adjusted series. These
simulationsare alittletrickier sincethey involve simulating the interest adjusted series, and then adding the
interest differential back to get a ssmulated version of the actual series. The simulated series is constructed
from,

P =€+ (tg—1 — i5_1),

where ¢, is the bootstrapped simulation of the appropriate ARMA process, and ¢; and :; are the actual
interest rate series. This rebuilds the simulated drift process adding the interest rate differential back in to
get asimulated exchange rate returns series.

Findings in the bottom of table 10 indicate a similar, but weaker pattern to those from the original
series. All the estimated parameters do a good job of replicating the overall autocorrelations seen in the
p-vaues for the LBP statistic on the right hand column of the table. The ML parameter estimates show
marginal rejections of the trading rule test for each of the series with simulated p-values of 0.120, 0.094,
and 0.142, for the BPIA, DMIA, and JYIA respectively. However, examining the results for either the
SMM parameters, or the GARCH model, gives a different story. These are again able to do a good job of
replicating the trading ruleresults. For example, the simulated p-valuesfor the AVE test on the ARMA(1,1)
using the SMM parameters are 0.832, 0.262, and 0.380 for the BPIA, DMIA, and JY | A respectively.

Theresultsfor SMM and GARCH ARMA models are quite striking. One interesting question is how
stable these results are over time. Table 11 uses the SMM parameter estimates from the entire sample to
generate 1000 bootstrapped simulationsfor two subsamples. The seriesis divided exactly in half with the
cutoff occurring in March of 1983. Simulated subsamples are generated using scrambled residuals from
each subsample. The table presents both the trading rule moments for each series subsample a ong with the
simulated p-values. For the trading rule tests the simulated stochastic ARMA models does a good job of
replicating the results for each subsample. For the correlations the model replicates the actual series well
with a few exceptions. One important exception is the LBP statistic for the BP2 series. The simulated
p-value here is 0.940 suggesting a large amount of autocorrelation from the simulated series relative to the

actual series.
D.Long AR’s

This section explores the possibility for replicating these results using longer range autoregressive
models estimated using OLS. Theresults for two models, an AR(10) and an AR(20), are given in table 12.
The models are estimated using OLS and simulated using the estimated residuals. They once again do a
very good job of matching up with autocorrelations in the series, as they should. However, matching up

with the trading rule moment resultsis again difficult as shown by the left side of table 12. For the all three
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series the simulated p-value for the average test isless than 10 percent for al the simulations except the JY
using an AR(20) where it is 0.18. It is either the case that these models are still unable to capture the long
range persistence seen in the series, or the results might be better replicated if parameters from the SMM

estimation techniques were used.**
E. Diagnostics and Discussion

The proceeding sections show that it is possible to find linear models which replicate both the trading
rule moments and the autocorrel ationsin these series. ARMA(1,1) models, which are consistent with slowly
changingrisk premiaaretheonly linear models of thosetested here which are capable of doingthis. Also, the
ARMA(1,1) specification only matchestheresultsfor theactual seriesusingthe SMM estimated parameters,
or the GARCH disturbance process, but not using maximum likelihood estimated parameters.

Many of the results in the previous section showed a dramatic change when moving from the ML
estimated models to parameters estimated using SMM. This section checks to see if anything is going
seriously wrong in the SMM estimation procedure. All the analysis here centers on the ARMA(1,1) model
estimation for the DM series. This series was chosen since it displayed the largest changes in moving from
the ML estimates to the SMM estimates.

Figure 3 displays the sum of squared residuals for the ARMA(1,1) for different parameter values.
The objective function is set to zero when these parameters are out of the range that is consistent with the
stochastic trends model which constrains the MA parameter to be less than the AR parameter. The figure
shows a generally well behaved objective which looks symmetric. Also, it looks like it would be hard to
discern between any of the possible parameter combinations which are on or near the diagonal. Figure 4
replaces the objective with the SMM objective including the trading rule moments. Thisplot is clipped at
the top for some of the very large values. The picture shows some evidence of asymmetry in that the drop
off near the diagonal appears much steeper for the larger AR values than for the smaller values.

Theactua changein the parameter estimatesis shownin figure 5 which comparesthe objectivefunction
on a straight line through the minimum parameters found by the SMM estimation. Thelineis constructed
to be parallel to the diagonal, AR=-MA. For example, for the DM the SMM estimated parameters (AR,MA)
are, (0.95,0.92). Figure 5 plots the objective for the parameter pairs (z, = — 0.03) with 2 on the x-axis.
This line passes very close to the ML optimum at (0.53,0.48). This figure shows the big difference in
the estimated AR coefficient using the two different methods. For the usual sum of squares objective the

graph showsaminimum near 0.5. The objectiveis quiteflat in the neighborhood of the minimum. For the

24 Unfortunately, with this many parameters SMM becomes infeasible for small computer estimation since calcu-
lation of the gradient using numerical techniques becomes extremely costly.
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SMM objective the minimum is closer to 0.95 with a very sharp jump down and then a quick and abrupt
increase. These figures do not show anything seriously wrong or strange about either objective function,
and the different parameter estimates appear to be very dramatic. It remainsto be seen just what is causing

these differences.
V. Simulated Sharpe Ratios

This section uses the parameter estimates from the previous section to test some properties of the
forecastability in these series. Predictability hereismeasured using conditiona Sharpe ratiosfrom astrategy
of forward market speculation. Thisisan essentially zero cost strategy (ignoring margins) of going long or
short in the forward market conditional on the trading rule result.

For this one security case this can be viewed as a standard deviation bound on the IMRS needed to
explain the trading rule returns. Thisis closely related to the technique of scaling returns at timet 4 1 with
time ¢ information suggested in Hansen and Jagannathan(1991) and used in Bekaert and Hodrick(1992).
Dynamic asset pricing models such as Lucas(1982) give the result that returns on a zero cost strategy must

be orthogonal to u'(c.41) and therefore,

0 = Ei(myip1(peg1 — ft)),

where m; ;41 istheIMRS from t to t+1. Adding time¢ conditioning information in the form of the trading
rule, Sy, gives,
0= Ei(me115:(Peg1 — ft))-

Writing the above expectation as the covariance plus the expected values and using the Cauchy-Schwarz

inequality gives,
Tm_ |E(St(peg1 — f1))]
E(m) = o(St(pigy1 — f1))

The purpose of table 13 isto find out whether this measurement of predictability isdifferent for some of

the different parameter values and model sfit in the previous sections. Thisis done by generating extremely
long time series of 10,000 weeks which amounts to almost 200 years of data. Another comparison is made
by using two different types of trading strategies. One uses the 30 day moving average already described.
When the priceis abovethislevel abuy is generated, and when it isbelow asell is generated. For this case
a pseudo price series is generated by directly exponentiating the smulated series, s;+; — f;. The second
strategy uses the ARMA(1,1) forecast using the true parameter values. If the forecast is positive, a buy
is generated, and if negative, a sdll is generated. This s the theoretical optimal forecast for this process.
Results will also be compared to the numbers from the original series. However, these numbers should

be viewed with caution since they are sampled from much shorter series. The Sharpe ratios are given at
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the monthly horizon for comparison with previous results. However, the portfolio positionsare allowed to
change at the weekly freguency.

The first row of table 13 shows the results for the BPIA series. The numbers for the original series
are somewhat smaller than those in Bekaert and Hodrick(1992). They are 0.27 while Bekaert and Hodrick
obtain values in the range of 0.3 to 0.4.> The row labeled ML gives the mean vaue for the ARMA(1,1)
simulated at the ML estimated parameters. The Sharpe ratio for the ARMA forecast is0.131, and the ratio
for the moving average trading rule is 0.123. This result suggests only a moderate drop off in the Sharpe
ratio when shifting from the optimal ARMA forecast using the true parametersto thetrading rule. Giventhat
inred lifethe true parameters are unknown, or may be changing over time, these results give an interesting
explanation for why trading rules might be preferred to more traditional time series analysis.

The second important fact to note for the BPIA series is that the Sharpe ratio changes dramatically
when changing from the ML parameters to the SMM parameters. For both forecasting techniquesit almost
doubles. Thissuggeststhat in terms of predictability thereis a big difference between the two different sets
of parameters. From table 8, the AR parameter is 0.922 for ML, and 0.992 for SMM. The GARCH model
produces a Sharpe ratio between the SMM and ML.

The entries in table 13 corresponding to the DMIA series show some similarities and differences to
the BPIA series. First, the differences between the ARMA trading rule and moving average rule remain
small. For the ML parameters the difference isabout 0.009 and similar differences are seen for the SMM and
GARCH simulations. An important difference for this seriesis that the changes across different modelsis
much smaller than for the BPIA. Thereisan increasefor both trading rulesfrom the ML to SMM parameters
of about 30 percent, but from the standard errors presented this does not appear to be a significantly large
increase.

Theresultsfor the JY IA in the bottom of table 13 are slightly different. The yen series displayslarge
differences between the ARMA and moving average forecasts for two of the three simulations, the ML, and
the GARCH. Also, the Sharpe ratio increase is not consistent across the different types of trading rules. For
the SMM parameters, the ARMA, and moving average rules give very similar Sharperatiosor 0.206, 0.181,
respectively. However, for the other processes the differences across the two rules are much larger.

These results demonstrate several interesting features of the trading rules, and the fitted stochastic
processes. First, for many of the simulations the differences in Sharpe ratios between the moving average

rules and ARMA forecasts were not great. Thisis very surprising since the ARMA forecasts are given a

25 Bekaert and Hodrick use both the scaled and unscaled returns in the Hansen-Jagannathon bounds calculation.

This is equivalent constructing Sharpe ratios from the optimal portfolio composition. The trading rule used in this
paper simply moves back and forth between longs and shorts and no attempt is made to find the optimal portfolio
composition.
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tremendous in advantage in using the true parameters. It istherefore likely that in rea life situationswhere
the parameters need to be estimated, or are slowly changing over time the moving average forecast might
dominate.?® The second interesting result isthat for some of the series the amount of predictability, as mea-
sured by the Sharpe ratio, changes dramatically as the parameters are changed. Thisshowsthat the different
estimated parameters are give very different economic conclusions about the amount of predictability in
these series.

Thesedifferences emphasi ze the need to further diagnosethe different model sand parameters estimated
here. Also, thiswork looks much more closely at thefitted stochastic model s than the economic significance
of the estimated predictability. Future work will try to address this second question more thoroughly

considering both transactions costs and other securities.
V. Conclusions

Theresultspresented in thispaper show that it ispossiblefor alinear model to replicatebothtrading rule
moments as well as traditional autocorrelations using both raw and interest rate adjusted foreign exchange
returns. Thisimpliesthat the trading rule results themselves are not necessarily indicative of nonlinearities
in foreign exchange series. However, these trading rule moments may prove useful in estimating models
with long highly persistent trend components.

Thesefindingsdo not imply that nonlinearitiesin foreign exchange series are not important. Thetrading
rules used were a very specific type of trend following rule, and there isamuch larger space of trading rules
available. Results such as those in Bilson(1989), Kim(1989) and LeBaron(1992) still show evidence for
nonlinearities. Finaly, the results should not be taken as holding for all asset markets. It is still not clear
what may be found for other markets and frequencies.

An important issue that this paper does not address is the connection between the stochastic trend
models estimated here with results from the forward and futures markets. Papers such as Hansen and
Hodrick(1980,1983) and Bilson(1981) document the biasin the predictions of forward rates for future spot
rates. Results here are generally supportiveof modelswith slowly changing risk premia, but thisrisk premia
is not connected to any specific type of economic risk. The results are also supportive of evidence that
movements in the risk premia are larger than movements in expected exchange rate changes. Thisis shown
by the relatively small change in the parameter estimates when shifting from the raw series to the interest
adjusted series. Thisagrees with resultsin Fama(1984) and Hodrick and Srivastava(1986).

26 These results are consistent with some results in Taylor(1992a,b) which show simple trading rules doing well
in comparison to more sophisticated time series techniques.
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Forecasting experiments show that for most of the estimated parameters the trading rules perform quite
favorably when compared to the optimal time series forecasting models. Thisresult is consistent with some
of the findingsin Taylor(1992a,b) and gives some support for the use of oscillatorsand channels as opposed
to more traditional time series models. In aworld where parameters need to be estimated, or wherethereis
some nonstationarity in the parameters themselvesit is quite possibl e that technical rules may be the optimal
forecasts.?”

This paper indicates some delinking of technical trading results and nonlinearitiesfor foreign exchange
series. The trading rule results can be replicated by linear models exhibiting persistent trends. Far from
being useless, the technical trading rules themselves hel ped to estimate these models. It remains to be seen
whether they will have further uses in estimating persistent trend models. Finally, further nonlinear effects

and the connections between volatility, trading rules and risk premianeed to be further explored.

27 Granger and Newbold(1986), page 174, report on cases where a close relative of the moving average rules,

exponential smoothers, will be an optimal forecaster. One case where this is true is where the state variable follows
a random walk and then in obscured by additive noise. This is close to the stochastic trend models fitted here, since
they are nearly nonstationary at the estimated parameters.
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Figure 1. $/British Pound and 30 week moving average.
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Figure 2: Moving average trading profit (Mean (Buy+(-1)Sell) Returns, British Pound. Moving averageis
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Figure 3: Sum of Squared errors, ARMA(1,1), DM. AR varies from zero to 1, MA variesfrom 0 to -1. If
-(MA)>AR the objectiveis set to zero.
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Figure 4: SMM Objective, ARMA(1,1), DM. AR varies from zero to 1, MA varies from 0 to -1. |If
-(MA)>AR the objectiveis set to zero.
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Tablel
Summary Statistics
Weekly Exchange Rates : Log First Difference

Description BP DM JY
Sample Size 965 965 965
Mean* 100 -0.019 0.062 0.084
Std* 100 1465 1473 1.389
Skewness 0.041 0.158 0.376
Kurtosis 5569 4529 5118
Max 0.074 0.081 0.065
Min -0.065 -0.068 -0.066
p1 0.036 0.038 0.088
P2 -0.009 0.077 0.095
03 0.022 -0.010 0.065
P4 0.081 0.041 0.039
05 0.021 -0.013 0.026
06 -0.012 -0.042 -0.005
7 0.019 0.005 -0.036
Ps 0.063 0.051 -0.003
P9 -0.024 0.014 0.000
P10 0.001 0.046 -0.085
Bartlett 0.032 0.032 0.032
LBP(10) 13.530 15.552 30.749
(p-vaue) x*(10) | 0.804 0.887 0.999

Summary statisticsfor BP (British Pound), DM (German Mark), JY (Japanese Yen) weekly exchange rates
from 1974-July 1992.
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Table2
Summary Statistics
Weekly Exchange Rates : Interest Rate Adjusted Log First Difference

Description BPIA  DMIA JYIA

Sample Size 659 659 659

Mean* 100 0.027 -0.033 0.014
Std* 100 1614 1585 1505
Skewness 0235 0371 0512
Kurtosis 4658 3934 4235
Max 0.075 0.080 0.065
Min -0.052 -0.047 -0.050
P1 0.047 0.047 0.101
P2 -0.009 0.073 0.087
P3 0.035 -0.002 0.052
P4 0.085 0.064 0.042
05 0.031 -0.004 0.058
06 -0.022 -0.060 -0.003
7 0.011 -0.003 -0.033
Ps 0.092 0.079 0.014
P9 -0.019 0.007 0.007
P10 0.020 0.060 -0.077
Bartlett 0.039 0.039 0.039
LBP(10) 14.356 16.743 21.831
p-values y?(10) | 0.843 0.920 0.984

Summary statisticsfor BP (British Pound), DM (German Mark), JY (Japanese Yen) weekly exchange rates.
The log first differences are adjusted using the interest differentials for the appropriate two countries. The
series cover the period from January 1979 through November 1991.
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Table 3
Random Walk Bootstraps

Series MA20 MA30 MAS50 AVE
BP 0.006 0.001 0.002 0.002
DM 0.001 0.001 0.011 0.003
JY 0.001 0.001 0.017 0.000
BPIA | 0.028 0.001 0.012 0.004
DMIA | 0.004 0.003 0.009 0.002
JYIA | 0001 0.006 0.017 0.003

Fraction of 1000 simulated random walks with trading rule moments greater than the origina series. The
trading rule moment isdefined as ) ~, S;_1r¢, where S;_; is1 if abuy period isindicated, and —1 for asell
period.
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Table4

DM AR(1) Experiment

AR(1) Parameter | Description | MA20 MA30 MAS0 AVE P1 P2 P3 LBP
Original 0.0017 0.0015 0.0013 0.0015 | 0.0382 0.0767 -0.0099 15.55
0.0 Mean 0.0000 0.0000 0.0000 0.0000 |-0.0014 -0.0031 -0.0022 10.14
p-value (0.000) (0.000) (0.002) (0.000) | (0.110) (0.006) (0.602) (0.119)
0.1 Mean 0.0005 0.0004 0.0003 0.0004 | 0.0998 0.0097 -0.0009 20.17
p-value (0.008) (0.008) (0.028) (0.003) | (0.974) (0.018) (0.606) (0.683)
0.2 Mean 0.0009 0.0008 0.0006 0.0008 | 0.1972 0.0381 0.0091 50.09
p-value (0.085) (0.065) (0.066) (0.049) | (0.999) (0.130) (0.706) (0.998)
0.3 Mean 0.0015 0.0012 0.0009 0.0012 | 0.2976 0.0871 0.0233 105.16
p-value (0.345) (0.273) (0.225) (0.256) | (0.999) (0.608) (0.824) (0.999)
04 Mean 0.0021 0.0018 0.0014 0.0018 | 0.3986 0.1583 0.0609 195.56
p-value (0.790) (0.669) (0.556) (0.680) | (0.999) (0.988) (0.981) (0.999)

Results of simulated AR(1)'s compared with the original DM series for various AR parameters. Origina
refers to the estimated trading rule moments and autocorrelations from the actual series. Means are the
means from 1000 simulated autoregressive models. P-values (in parenthesis) are the fraction of simulated
random walks with trading rule moments greater than the original series. The trading rule moment is defined
as) , Si_1ri, where S;_; is1if abuy periodisindicated, and —1 for asell period.
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Table5

AR(2) Parameter Estimates

re=a+birig +bari—o 4 €

Series Estimation a by by b
BP OLS -0.0001 0.034 -0.001
(0.0004) (0.041) (0.035)
BP SMM -0.0001 0038 0.009 14.18
(0.0006) (0.032) (0.041) (0.028)
DM oLSs 0.0006 0.036 0.077
(0.0004) (0.036) (0.037)
DM SMM 0.0006 0.038 0.061 8.71
(0.0005) 0.030) (0.042) (0.191)
JY oLS 0.0008 0.081 0.088
(0.0004) (0.042) (0.035)
JY SMM 0.0014 0.090 0.084 7.97
(0.0005) (0.035) (0.035) (0.240)

Estimated parameters using ordinary least squares (OL S) and simulated method of moments (SMM). Num-
bers in parenthesis for the parameter estimates are OLS and SMM standard errors. x? is the goodness of
fit test for the method of moments objective. It is asymptotically distributed x*(6) under the null model
specification. Numbers in parenthesis below the x? value are asymptotic p-values. Moment conditions
include mean, standard deviation, the first five autocovariances, and three technical trading rules using, 20,
30, and 50 week moving averages. The SMM weighting matrix and standard errors are estimated using a

Newey-West autocovariance matrix with 15 lags.
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Table 6
GARCH(1,1)-AR(2)

re=a+biri—1 +bari—o + €
€ = hiﬂzt
hi = ag + 04163_1 + Bhi1
z ~ N(0,1)

Series a by by ag * 10° oy I’

BP -0.0003 0.075 0.041 1.896 0.153 0.766
(0.0004) (0.038) (0.038) (0.308) (0.028) (0.033)
DM 0.0006 0.056 0.095 1.227 0.179 0.776
(0.0004) (0.037) (0.034) (0.306) (0.027) (0.029)
JY 0.0007 0.105 0.077 1.901 0.207 0.710
(0.0004) (0.037) (0.036) (0.316) (0.033) (0.037)

Estimated using maximum likelihood. Numbers in parenthesis are asymptotic standard errors.
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Table7
AR(2) Smulations

Series | Estimation | MA20 MA30 MAS50 AVE  p s 03 LBP
BP | Origind | 00012 00017 0.0014 00014 | 0.0355 -0.0090 0.0223 13.53
OLS (0.019) (0.003) (0.007) (0.004) | (0.444) (0.605) (0.235) (0.285)
SMM (0.016) (0.000) (0.005) (0.001) | (0.495) (0.711) (0.264) (0.318)

GARCH | (0.064) (0.011) (0.022) (0.022) | (0.788) (0.877) (0.346) (0.836)
DM | Origind | 00017 0.0015 0.0013 00015 | 0.0382 0.0767 -0.0099 155519
oLS (0.011) (0.021) (0.042) (0.015) | (0.477) (0.484) (0.663) (0.546)
SMM (0.009) (0.015) (0.039) (0.012) | (0.502) (0.321) (0.659) (0.437)
GARCH | (0.043) (0.066) (0.074) (0.046) | (0.643) (0.658) (0.683) (0.898)
JY | Origind | 00019 00017 00013 0.0017 | 0.0877 0.0950 0.0650 30.7486
OLS (0.011) (0.030) (0.084) (0.024) | (0.483) (0.489) (0.065) (0.309)
SMM (0.012) (0.027) (0.101) (0.023) | (0.601) (0.495) (0.047) (0.379)
GARCH | (0.027) (0.034) (0.103) (0.036) | (0.647) (0.434) (0.168) (0.637)

Results of 1000 simulated AR(2)’'s compared with the original series using estimated parameters. Origina
refers to the estimated trading rule moments and autocorrelations from the actual series. P-values (in
parenthesis) are the fraction of simulated random walks with trading rule moments greater than the original
series. The trading rule moment is defined as > , S¢_;7¢, where S;_, is 1 if abuy period is indicated, and
—1 for asdl period.
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Table 8

ARMA(1,1) Parameter Estimates

re=a+0irig — b1 + ¢

Series  Estimation a by by b
BP ML -0.0001 0442 0.408
(0.0003) (0.260) (0.265)
BP SMM 0.0001 0983 0957 6.311
(0.0005) (0.016) (0.026) (0.389)
DM ML 0.0003 0538 0.482
(0.0003) (0.247) (0.259)
DM SMM 0.0004 0956 0923 7.261
(0.0004) (0.068) (0.085) (0.297)
JY ML 0.0006 0.368 0.270
(0.0003) (0.106) (0.112)
JY SMM 0.0010 0914 0856 2495
(0.0005) (0.053) (0.070) (0.869)
BPIA ML 0.0000 0922 0.890
(0.0000) (0.055) (0.089)
SMM -0.0002 0992 0972 4525
(0.0008) (0.030) (0.070) (0.606)
DMIA ML 0.0002 0892 0.852
(0.00001) (0.091) (0.105)
SMM -0.0003 0967 0940 5.886
(0.0007) (0.041) (0.054) (0.436)
JYIA ML 0.0000 0.682 0.583
(0.0003) (0.154) (0.167)
SMM 0.0003 0898 0.838 2105
(0.0007) (0.080) (0.100) (0.910)

Estimated parameters using maximum likelihood and simulated method of moments (SMM). Numbers in
parenthesis for the parameter estimates are ML and SMM standard errors. y? is the goodness of fit test for
the method of moments objective. It is asymptotically distributed v (6) under the null model specification.
Numbers in parenthesis below the y* value are asymptotic p-values. Moment conditions include mean,
standard deviation, the first five autocovariances, and three technical trading rules using, 20, 30, and 50
week moving averages. The SMM weighting matrix and standard errors are estimated using a Newey-\West

autocovariance matrix with 15 lags.
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Table9
GARCH(1,1)-ARMA(1,1)

re=a+0irig — b1 + ¢
1/2
€ = ht/ Zt

hi = ag + 04163_1 + Bhi1

4 N(O, 1)
Series a by by p * 10° o ﬁ
BP -0.0001 0.747 0.672 1.889 0.152 0.766

(0.0002) (0.138) (0.158) (0.310) (0.028) (0.034)
DM | 00003 0582 0506 1249 0179 0.774
(0.0003) (0.238) (0.259) (0.310) (0.027) (0.029)
JY 00004 0586 0469 1823 0204 0.716
(0.0003) (0.175) (0.198) (0.302) (0.033) (0.036)
BPIA | 00000 0.899 0846 2777 0111 0782
(0.0001) (0.073) (0.094) (0.026) (0.026) (0.073)
DMIA | -0.0000 0.892 0830 5420 0199 059
(0.0001) (0.079) (0.099) (1.506) (0.046) (0.075)
JYIA | -00000 0683 0572 7342 0114 0546
(0.0002) (0.167) (0.196) (2.253) (0.041) (0.122)

Estimated using maximum likelihood. Numbers in parenthesis are asymptotic standard errors.
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Table 10
ARMA(1,1) Smulations

Series | Estimation | MA20 MA30 MAS50 AVE  p s 03 LBP
BP | Origind | 00012 00017 0.0014 00014 | 0.0355 -0.0090 0.0223 13.53
ML (0.021) (0.001) (0.007) (0.004) | (0.478) (0.780) (0.302) (0.306)
SMM (0.812) (0.720) (0.833) (0.803) | (0.691) (0.928) (0.772) (0.838)

GARCH | (0524) (0.212) (0.268) (0.321) | (0.814) (0.925) (0.669) (0.913)
DM | Origind | 00017 00015 0.0013 00015 | 0.0382 00767 -0.0099 15.55
ML (0.012) (0.019) (0.044) (0.014) | (0.700) (0.088) (0.777) (0.374)
SMM (0.310) (0.406) (0.511) (0.391) | (0.685) (0.283) (0.947) (0.815)
GARCH | (0.151) (0.167) (0.217) (0.159) | (0.779) (0.258) (0.752) (0.845)
JY Origind | 0.0019 0.0017 00013 0.0017 | 0.0877 0.0950 0.0650 30.7486
ML (0.006) (0.017) (0.074) (0.015) | (0.639) (0.037) (0.054) (0.139)
SMM (0.306) (0.409) (0.559) (0.419) | (0.422) (0.279) (0.546) (0.659)
GARCH | (0.163) (0.207) (0.339) (0.212) | (0.763) (0.334) (0.338) (0.690)
BPIA | Origind | 0.0013 0.0019 0.0015 0.0016 | 0.0333 -0.0225 0.0233 11.2974
ML (0.271) (0.056) (0.153) (0.120) | (0.523) (0.925) (0.582) (0.658)
SMM (0.858) (0.770) (0.876) (0.832) | (0.804) (0.974) (0.862) (0.893)
GARCH | (0.815) (0.633) (0.638) (0.710) | (0.708) (0.942) (0.695) (0.893)
DMIA | Origind | 0.0020 0.019 0.0015 0.0018 | 0.0403 0.0675 -0.0078 15.3778
ML (0.099) (0.088) (0.156) (0.094) | (0.604) (0.276) (0.867) (0.510)
SMM (0.195) (0.236) (0.394) (0.262) | (0.588) (0.371) (0.879) (0.632)
GARCH | (0.744) (0.724) (0.727) (0.748) | (0.722) (0.504) (0.897) (0.863)
JYIA | Origind | 0.0018 0.0017 00013 0.0016 | 0.0897 0.0757 00407 19.1501
ML (0.145) (0.137) (0.215) (0.142) | (0.693) (0.476) (0.592) (0.653)
SMM (0.343) (0.346) (0.466) (0.380) | (0.355) (0.432) (0.682) (0.692)
GARCH | (0.344) (0.265) (0.339) (0.307) | (0.724) (0.571) (0.617) (0.761)

Results of 1000 simulated ARMA(1,1)'s compared with the original series using estimated parameters.
Original refers to the estimated trading rule moments and autocorrel ations from the actual series. P-values
(in parenthesis) are the fraction of simulated random walks with trading rule moments greater than the
original series. The trading rule moment is defined as ), S;_;r;, where S;_; is 1 if a buy period is
indicated, and —1 for asell period.
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Table11
ARMA(1,1) Smulations: Subsamples

Series | Estimation | MA20 MA30 MAS50 AVE  p s 03 LBP
BPL | Origind | 0.0018 0.0020 0.0022 00020 | 0.0855 0.0073 00723 150102
smm (0.653) (0.624) (0.626) (0.631) | (0.352) (0.811) (0.451) (0.644)
BP2 | Origind | 0.0008 0.0017 0.0006 0.0010 | 0.0067 -0.0089 -0.0118 6.4583
smm (0.807) (0.611) (0.885) (0.778) | (0.827) (0.864) (0.896) (0.940)
DM1 | Origind | 0.0020 0.0022 0.0023 00021 | 0.0722 00677 00676 52.3467
smm (0.350) (0.621) (0.600) (0.520) | (0.324) (0.251) (0.546) (0.558)
DM2 | Origind | 0.0020 0.0022 0.0018 0.0020 | 0.0108 00725 -0.0535 8.4280
smm (0.410) (0.376) (0.488) (0.412) | (0.830) (0.404) (0.986) (0.881)
JY1 |Origind | 00020 00021 00014 00019 | 01135 0.1432 0.0801 29.3061
smm (0.233) (0.174) (0.435) (0.247) | (0.300) (0.123) (0.435) (0.412)
Jv2 |Origind | 00019 00015 00015 0.0016 | 0.0706 0.0633 0.0499 13.8232
smm (0.417) (0.602) (0.545) (0.519) | (0.613) (0.607) (0.643) (0.803)

Results of simulated ARMA(1,1)’'s compared with the original series using estimated parameters. Original
refers to the estimated trading rule moments and autocorrelations from the actual series. P-values (in
parenthesis) are the fraction of simulated random walks with trading rule moments greater than the original
series. The trading rule moment is defined as > _, S¢_7¢, where S;_, is 1 if abuy period is indicated, and

—1 for asdl period.

39



Long AR Simulations

Table 12

Series | Estimation | MA20 MA30 MAS0 AVE  p s 03 LBP
BP | AR(10) | (0.183) (0.024) (0.051) (0.045) | (0.454) (0.521) (0.480) (0.879)
BP | AR(20) | (0.217) (0.045) (0.075) (0.083) | (0.477) (0.579) (0.480) (0.867)
DM | AR(10) | (0.038) (0.076) (0.108) (0.063) | (0.529) (0.499) (0.501) (0.877)
DM | AR(20) | (0.054) (0.074) (0.109) (0.059) | (0.474) (0.487) (0.497) (0.890)
Y |AR@10) |(0.012) (0.020) (0.070) (0.016) | (0.493) (0.425) (0.575) (0.712)
I |AR(0) |(0.093) (0.176) (0.360) (0.180) | (0.468) (0.415) (0.537) (0.729)

Results of simulated AR’s compared with the original series using estimated parameters. Original refers to
the estimated trading rule moments and autocorrelations from the actual series. P-values (in parenthesis)
are the fraction of simulated random walks with trading rule moments greater than the original series. The
trading rule moment isdefined as > , S¢_ 7, where S;_; is 1 if abuy period isindicated, and —1 for asell

period.
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Table 13
Conditional Sharpe Ratios

Series | Estimation | ARMA TR
BPIA | Origina 0278 0.206
ML 0131 0.123
(0.023) (0.023)
SMM 0254 0.227
(0.036) (0.034)
GARCH 0172  0.155
(0.023) (0.022)
DMIA | Origina 0173 0.218
ML 0131 0.122
(0.021) (0.021)
SMM 0.167 0.162
(0.025) (0.024)
GARCH 0193 0171
(0.023) (0.023)
JYIA | Origind 0296 0.212
ML 0203 0.119
(0.021) (0.019)
SMM 0206 0.181
(0.024) (0.022)
GARCH 0221 0.128
(0.020) (0.020)

Expected return divided by standard deviation for dynamic forward strategies. Thereturnis.S;(si+1 — fi),
where S; is 1 for abuy signal and —1 for asell. Simulated Sharpe ratios are the ratios of the conditional
mean to standard deviation using 10,000 weeks of simulated data. Aggregation is done by adding the
dynamic weekly returns to obtain monthly returns. Trading is still alowed at weekly frequency. Numbers
in parenthesis are the standard deviations of the estimated Sharpe ratios from 100 simulations of the 10,000

week samples.
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