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Abstract

Evolutionary metaphors have been prominent in both economics and finance. They are
often used as basic foundations for rational behavior and efficient markets. Theoretically, a
mechanism which selects for rational investors actually requires many caveats, and is far from
generic. This paper tests wealth based evolution in a simple, stylized agent-based financial
market. The setup borrows extensively from current research in finance that considers optimal
behavior with some amount of return predictability. The results confirm that with a homo-
geneous world of log utility investors wealth will converge onto optimal adaptive forecasting
parameters. However, in the case of utility functions which differ from log, wealth selection
alone converges to parameters which are economically far from the optimal forecast parame-
ters. This serves as a strong reminder that wealth selection and utility maximization are not
the same thing. Therefore, suboptimal financial forecasting strategies may be difficult to drive
out of a market, and may even do quite well for some time.
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1 Introduction

Evolution has always played an important background role in both finance and economics. Many
researchers have taken comfort in thinking that irrational trading strategies, or less than profitable
firms would eventually be removed from the market.1 The theoretical backing for this strong
defense of rationality is not as definitive as its proponents would have us think. Different situa-
tions require different restrictions on behavior for convergence to rationality. This paper explores
this question in a very standard financial forecasting test case where stock returns have some
weak predictability. In this world wealth evolution can select for distorted predictors which are
economically far from the optimal true probabilities. This demonstrates that some irrational fore-
casters may be very difficult to remove from a market, and may even thrive. These forecasters put
excessive weight on the recent past relative to a Kalman filter benchmark. Therefore, they would
appear to be biased toward favoring momentum strategies.2

The fact that wealth growth and utility maximization are not the same thing is well known
in finance. It generated a large debate in the 60’s and 70’s about the normative case for holding
portfolios that maximized the growth rate of wealth.3 This paper, and also the modern literature
on growth optimality, looks at the positive question of which strategies survive in a wealth evolu-
tionary dynamical system. In this situation the growth optimal portfolio plays an important role.
It is often the strategy which survives in the long run.4 In different situations, for different prefer-
ences, it may or may not be a utility maximizing strategy. This paper contributes to this question
by looking at the case where returns are predictable.

This paper uses a simple example to see if these wealth selection biases might be relevant to ac-
tual asset pricing and investor behavior. This is done in the context of a model where asset returns
are predictable. It is based on Campbell & Viceira (1999), and more recently Pastor & Stambaugh
(2009), where asset returns contain some predictability. The basic result is that wealth growth can
select trading strategies far from the optimal predictive rules. Fitness objective functions using
utility maximizing objectives will always chose the true forecast parameters, as they should.

After briefly presenting the model, the paper will test the benchmark case of log utility. Then
log traders will be replaced by more risk averse traders, and finally some experiments will be

1 The early comments on this are in Alchian (1950) and Friedman (1953). Another important approach to evolution
in economics is Nelson & Winter (1982). Hodgson (1993) is a still a nice general overview with many classical references.

2 Momentum strategies can generally be classified as short range trend following strategies. LeBaron (2000) shows
that trend following and momentum strategies are very similar. A recent survey of this large area is in Swinkels (2004).

3This is known as the growth optimal portfolio. See Samuelson (1971) and Hakansson (1971) for the original debate.
Also, Kelley (1956) and Breiman (1961) provide the theoretical foundations.

4 Various theoretical papers have reached similar conclusions in different frameworks. These include Blume &
Easley (1990) and Blume & Easley (2006) which analyze utility maximizing strategies with prices set endogenously.
The latter paper paper proves that in a complete market world the convergence to true beliefs will occur regardless
of preference parameters. However, the authors point out that in an incomplete market world this convergence is not
guaranteed. Evstigneev, Hens & Schenk-Hoppe (2006) look at an incomplete market world with endogenous prices.
In their framework the growth optimal strategy will dominate any other competing strategy in terms of acquiring all
wealth in the long run. This is also related to the survival of noise traders as in DeLong, Shleifer, Summers & Waldmann
(1991). In a slightly different setup Kogan, Ross & Wang (2006) show that even when irrational traders’ wealth goes to
zero, their price impact does not. The model considered here differs from this in that trader price impact is ignored.
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performed which examine convergence speeds.

2 Results

2.1 Model structure

The economy considered here is a partial equilibrium one where security prices are set exoge-
nously, and are not influenced by changes in wealth. There are two assets in the market. A risk
free asset which pays a fixed return, and a risky asset paying a stochastic return with a small pre-
dictable component. Returns will be generated at a weekly frequency, and all portfolio rebalancing
decisions will be made on a weekly basis.

The parameters are calibrated to well known results from financial markets to look reason-
able.5 The risk free return is given as R f , with r f = log(1 + R f ). The return on the single risky
asset is given by Rt with rt = log(1 + Rt).

The dynamics of rt are given by

rt+1 = xt+1 + et+1 (1)

xt+1 = µ + ρ(xt − µ) + ηt+1. (2)

This representation follows Campbell & Viceira (1999), and is a reasonable benchmark for financial
returns series showing some amount of predictability.

Certain aspects of the stochastic structure of rt will be important for the framework. Both noise
shocks, et and ηt, will be normally distributed, and are homoeskedastic with variances given by σe

and ση . The annualized values of these are given in table 1. Two other important features will be
used in choosing parameters. First, the signal to noise ratio in returns series is small. Predictive
regressions run at the annual frequency generally yield very small R2 values, usually between 0
and 10 percent. Reflecting this, the parameters are set so that the variance of xt is 2 percent of
the total return variance at the weekly frequency. Table 2 reports a monte-carlo simulation of the
return process, showing autocorrelations at frequencies of 1 to 4 weeks, and the R2 for a simulated
one year predictive regression. Values in parenthesis are standard deviations across 1000 monte-
carlo runs. The relatively short sample lengths are chosen to correspond to those available in
many financial time series. The annual prediction experiment assumes the investor knows xt and
regresses the next year’s return on the current value. The simulations produce R2 estimates which
are approximately 10 percent with very large dispersion across the simulated cross section. We
should expect these numbers to have a slight upward bias due to the fact that in this experiment
it is assumed that investors know the value of xt.

The value of ρ is set to 0.95. This represents the large persistence believed to characterize
many predictor variables. For example, Campbell & Viceira (2002) report a value of 0.957 for an
estimate of the quarterly impact of lagged dividend price ratios on current ones. The value of 0.95

5See Campbell & Viceira (2002) for many examples.
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is probably slightly too small for weekly persistence, but there are several reasons for choosing
this. First, xt doesn’t exactly represent dividend/price ratios, but is a stand-in for many different
predictors. Second, the value of 0.95 is useful in the experiments to see if agents are able to discern
between a stationary, and a nonstationary process for xt. As an initial test, it seems reasonable to
move this parameter farther away from 1.

The experiments performed in this paper will concentrate on the evolution of wealth shares
across traders. The objective is to find out in a pool of noninteracting strategies with an exogenous
returns process, who in the end is left standing through simple compounding of wealth onto
successful dynamic portfolios. Agent i’s strategy each period will be to invest αt,i fraction of wealth
in the risky asset, and 1 − αt,i fraction in the risk free. The portfolio return from t to t + 1 is
therefore,

Rp
t+1,i = αt,iRt+1 + (1− αt,i)R f . (3)

The wealth share of agent i follows,

wt+1,i =
wt,i(1 + Rp

t+1,i)

∑N
j=1 wt,j(1 + Rp

t+1,j)
. (4)

The dynamics of wealth depends on the realized distribution of returns, wealth shares at period t,
and the portfolio strategies at period t, αt,i.6

Portfolio choice in the model is determined by a simple myopic power utility function in future
wealth. Campbell & Viceira (2002) show that for log normal returns the fraction of wealth in the
risky asset is approximated by

αt,i =
Ei

t(rt+1)− r f + σ2
t /2

γσ2
t

. (5)

The portfolio weights will be restricted to −0.5 < αt,i < 2. This allows for some short selling, and
some leverage. This range is designed to replicate a moderate risk taking hedge fund more than
the average individual investor.7

Optimal return forecasts in this state space world are given by the usual Kalman filter that
gives a forecast of

x̂t+1|t = µ + ρi(x̂t|t−1 − µ) + ωi(rt − x̂t|t−1), (6)

where xt+1|t is the forecast of xt+1 given time t information. ρi is the memory parameter, and
ωi is closely related to the Kalman gain parameter.8 The basic experiments will race investment
strategies in terms of relative wealth across different values of the (gain,memory) pair, (ωi, ρi).
Given the parameters from table 1 the optimal forecast parameter pair is given by is (ω∗, ρ∗) =

6If agents were assumed to consume a constant fraction of wealth, λ, each period, the above relative wealth relations
would not change.

7LeBaron (2007) reports results which are robust across several other portfolio bounds.
8 See LeBaron (2007) for a detailed derivation.
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(0.0164, 0.95). This is a target that will be used when examining wealth distributions in the model
simulations. Finally, σ2

t will be set to σ2
r . This is a reasonable approximation given that the signal

to noise ratio in the model is small.

2.2 Log utility

This section focusses on the case where all agents have γ = 1 or log preferences. Agents fol-
low adaptive forecasting rules as in equation 6. They will be heterogeneous both in terms of the
gain and memory parameters. The objective is to see how well wealth is drawn to the optimal
forecasting parameters determined by the Kalman filter.

The two panels of figure 1 show the long run properties for different forecasting parameters.
The parameter pairs are organized on a grid by the memory and gain parameters for the adaptive
forecasts. Memory parameters vary from 0.9 to 1.0 incremented by 0.01. Gain parameters vary
from 0 to 0.1 incremented by 0.01.9 This gives a 11 by 13 grid for a total of 143 rules. The dark
lines mark the optimal forecast parameters, or strategies formed by using the true conditional
expectation. The gain levels at zero are an important value to keep track of since this corresponds
to ignoring any new return information in the forecast, and using a constant forecast set to the
unconditional mean return.

The top panel of figure 1 shows the cross sectional mean of wealth fractions over 100 runs
recorded after 500 years. The contour height (displayed on the right legend) is in units of density
divided by uniform density (1/143 = 0.007). For example, a contour level of 2 indicates that
the corresponding rule has twice the wealth density it would have under a uniform wealth dis-
tribution. The figure shows a clear long run concentration on the optimal forecasting rule. This
indicates that for the γ = 1 investor wealth will concentrate on the true conditional expectation
based trading rule in the long run.

The lower panel of figure 1 shows the estimated expected utility for the different strategies.
This is estimated with the time series mean taken over the 500 years and over the 100 cross section.
It is reported as an annual certainty equivalent return. This is estimated as,

log(1 + r∗p) = E(log(1 + rp,t)), (7)

where the above expectation is estimated by taking both time and cross sectional means. It shows
a region around the optimal rule with a annual certainty equivalent of about 10 percent. This
drops off as the distance to the optimum increases. It is interesting to note that the drop off is very
steep as one moves to the constant forecasting rules on the left side of the panel where the gain is
zero. This indicates the economic usefulness of the adaptive strategy for the γ = 1 investor. There
is also an asymmetry in the shape in that utility levels are not all that sensitive to reductions in
the memory parameter. Dropping the memory parameter to 0.9 has only a small impact on the

9 Extra points are added at 0.005, and 0.0164. Both give a finer grid near zero, and the later makes sure that the true
optimal forecast parameters are in the grid.
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certainty equivalence level.

2.3 Risk aversion (γ = 3)

The previous section demonstrated that wealth does converge to the optimal forecasting param-
eters for the γ = 1 (log) investor as predicted by theory. Unfortunately, it is not at all clear this
is a good level of risk aversion for actual investors.10 It is generally felt that γ = 1 is somewhat
low. Economists and financial advisors often use a wide range of values of γ > 1. All these higher
levels of risk aversion are probably a much better approximation to the actual population than
γ = 1.

Figure 2 repeats the two panel plot of long run wealth and expected utility levels for γ = 3.
The upper panel has changed dramatically. Wealth is no longer converging to the optimal forecast
parameters. The wealth density is maximized at a (gain, memory) pair of (0.06, 1.00), well off the
optimum values which are again marked by the dark lines. The lower panel reports the utility
levels as annual certainty equivalents which are given by,

(1 + r∗p)
1−γ = E((1 + rp,t)1−γ) (8)

This shows clearly that in utility terms, the optimal forecast parameters are utility maximizing
for investors. The maximum certainty equivalent return is estimated as 5.25 percent per year at
the optimal forecast parameters. It is only 2.91 at the wealth maximizing parameters, which is a
loss of almost 2.5 percent, or 50 percent of the certainty equivalent return. The utility surface is
again relatively flat in the the memory parameter with little change coming from reducing this
to 0.90. The surface is steep in the direction of reducing the gain parameter to zero which again
corresponds to moving to a constant weight portfolio.

Figure 3 shows the dynamics of the wealth distributions over time. As in the previous figures
these are again cross sectional means over 100 different runs. The pattern is interesting in that
the movement away from the optimal values begins early. Even at 5 years, the wealth density is
drifting to the northeast corner. By 20 years there is a pronounced large bias in the gain parameter.
This continues at 50 and 200 years.

3 Conclusions

This paper has shown that wealth evolution alone can converge to forecasting strategies with
distorted beliefs. These results were predicted by theoretical work on strategy evolution, but
the results here are performed using a familiar forecasting setup calibrated to known patterns in
financial time series.

The most important qualitative aspect of the forecast distortion is the selection of gain pa-
rameters which are well above the optimal value. This translates into wealth concentrating on

10 For example, see Bliss & Panigirtzoglou (2004), and references therein.
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strategies which put too much weight on current returns in their forecasts. Such strategies could
correspond to the presence of momentum and trend following strategies in actual markets.

The experiments also confirm that the true forecast parameters would be selected under a util-
ity maximization objective. In financial markets subject to learning, gradients carrying wealth to
both the these maxima may exist. The wealth maximizing point is obvious, as it is driven be the
relative success of certain strategies in terms of wealth growth. Almost any sensible model of
wealth dynamics should will have some aspect of this wealth dynamic built in. The utility max-
imization point would attract wealth under some form of active learning, where agents actively
shift strategies onto those estimated to maximize utility.11 In real markets there may be a tension
in terms of the accumulation of wealth between these two forms of learning.

Several extensions to this model would appear to be important. First, experiments will need
to follow the theoretical literature, and much of the computational literature, and endogenize
prices.12 One can always question whether the convergence results given here would be affected
by price changes as wealth moves around. This paper deliberately eliminated this effect, but in the
future it has be be part of the analysis of evolution and financial markets. A second simplification
which may have a large impact was the assumption that the innovations to the expected return
process and the return noise process are independent. This deviates from some of the forecasting
evidence and many of the prediction models in use. It also has a nontrivial impact on the structure
of the Kalman filter forecasting system.13 If there is a large enough negative correlation then a large
recent returns could have a negative impact on predicted future expected returns, and therefore
would warrant a negative gain parameter in this system. Implementing a richer evolutionary
system which better addresses this issue is another important extension.

The basic point of this paper is simple. Wealth evolution, on its own, will not reliably per-
form the function that it is often assumed to do. This obviously forces some difficult choices
for researchers building heterogeneous adaptive models. If optimal forecasts hold any sway as
a target markets might be tending toward, then this movement must be coming from the active
learning side. Worse, the passive learning side will be slowly, and steadily working against this
drift. Unfortunately, modeling active learning is much more difficult than passive learning. These
results suggest that there will always remain some amount of wealth concentrated on strategies
that would be difficult to explain from the standpoint of optimal forecasting. Understanding ex-
actly what one would expect this wealth distribution to look like as it moves through time, and its
impact on prices remains an interesting question.

11 See LeBaron (2011 forthcoming) for further discussions.
12 See LeBaron (2010) for an example with some similar strategies, and a rich trading environment with endogenous

pricing, and agent survival.
13 See Pastor & Stambaugh (2009) for discussion.
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Table 1: Return Parameter Values
Parameter Value
r f 0.02
E(rt) 0.07
σr 0.20
σ2

x /σ2
r 0.02

ρ 0.95

Description: Parameters for return time series. All values are annualized, but simulations are done
at the weekly frequency. r f is the risk free interest rate. E(rt) is the unconditional expected real
return on the risky asset. σr is the corresponding annual standard deviation. σ2

x /σ2
r is the signal

to noise ratio in the returns series. ρ is the AR(1) persistence parameter for the expected return
process.
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Table 2: Return Time Series Simulations
Sample ρ1 ρ2 ρ3 ρ4 R2

25 Years 0.018 0.013 0.016 0.015 0.110
(0.028) (0.028) (0.029) (0.028) (0.106)

50 Years 0.019 0.017 0.017 0.015 0.100
(0.020) (0.020) (0.020) (0.020) (0.075)

Description: Mean values from 1000 monte-carlo return simulations corresponding to 25 and 50
years. ρj is the return autocorrelation at j week lag. R2 is the R2 of a annual regression of year t+1
returns on xt, the expected return, at the end of year t. Numbers in parenthesis are the standard
deviations of these estimated values from the 1000 length cross section.
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Figure 1: Wealth and utility surfaces for γ = 1
This upper panel in this figure shows the wealth distribution after 500 years estimated as a mean
over a 100 run cross section. The figure shows the density over the different strategies indexed
by the memory and Kalman gain parameters. The height measures the density at each grid point
relative to a uniform density. The lower panel measures the expected utility of each rule reported
in units of annual certainty equivalent returns. Both maximums correspond to the optimal Kalman
forecast parameters of (0.016, 0.950). The maximum certainty equivalent return is 0.100, or 10 per-
cent per year.
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Figure 2: Wealth and utility surfaces for γ = 3.
This upper panel in this figure shows the wealth distribution after 500 years estimated as a mean
over a 100 run cross section. The figure shows the density over the different strategies indexed
by the memory and Kalman gain parameters. The height measures the density at each grid point
relative to a uniform density. The lower panel measures the expected utility of each rule reported
in units of annual certainty equivalent returns. The maximum of the wealth density is at the (gain,
memory) pair of (0.06, 1.00). The annual certainty equivalent return at this point is 2.91 percent
which compares to an annual certainty equivalent return of 5.25 at the optimal forecast parameters.
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Figure 3: Wealth surfaces for γ = 3: Time evolution
This set of 4 figures displays the time evolution of the cross sectional averages of wealth distribu-
tions. Distributions are sampled at the 5, 20, 50, and 200 year time periods.
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